
Paging Problem

(special case of the k-server problem)

1 Introduction

The k-server problem is the following on-line problem. You are given a metric space and k “servers”. At
every time step a point of the metric space is “highlighted”, which must be covered by one of the servers.
The goal is to make as few moves with the servers as possible.

We are not going to investigate the fully general problem, we will restrict ourself to a uniform metric,
i.e., d(i, j) = 1 if i 6= j and d(i, i) = 0 for all i. This problem is also known as the “paging problem”.

This is an on-line problem. We are going to look at randomized algorithms versus an oblivious adversary
(i.e., the adversary does not know the random choices of the algorithm ahead of time).

2 Upper bound

We present the Marker algorithm (due to Fiat, Karp, Luby, McGeoch, Sleator and Young, 1991), because
it has a “proof from the book”, and it has a competitive ratio that is only a factor 2 away from the best
possible.

2.1 Algorithm

We start of with the servers in any position. Servers can be marked or unmarked; at the start of the algorithm
all servers are unmarked. The algorithm is as follows: a request comes in; if there is a server on that point,
the server is marked; otherwise, if there is no unmarked server, then all servers are unmarked; now we are
sure that there exists an unmarked server, one of them is chosen uniformly at random (and independently)
and moved to that point; the server is then marked.

2.2 Analysis

We split the requests into “phases”, such that every phase has exactly k distinct points and the first point of
the next phase is not equal to any of these. We let Ri denote the set of distinct points in phase i (so |Ri| = k
for all i), and we let Oi denote the set of points on which the optimal off line algorithm has its markers at
the start of phase i (so also |Oi| = k for all i).

First we will lower bound the number of moves in phase i of the optimal algorithm: obviously the number
of moves is at least |Ri \ Oi|, as the points in this set have to be covered by servers. But the number of
moves is also lower bounded by |Ri \ Oi+1|, as the points in this set are vacated in phase i by servers in
the optimal algorithm, so the servers have moved elsewhere. Note that |Ri \ Oi+1| = |Ri| − |Ri ∩ Oi+1| =
|Oi+1| − |Ri ∩Oi+1| = |Oi+1 \Ri|.

We take the average of these two lower bounds to get

opti ≥
|Ri \Oi|+ |Oi+1 \Ri|

2

as a bound on the cost for the optimal algorithm incurred in the ith phase.

1

Summing over all phases yields:

opt =
∑
i

opti ≥
∑
i

|Ri \Oi|+ |Oi+1 \Ri|
2

.

We want these sums to telescope, so we will massage the summand somewhat.
Note that |A \B| ≥ |A \ (B ∪ C)| = |(A \ C) \ (B \ C)| ≥ |A \ C| − |B \ C|. Using A = Ri, B = Oi and

C = Ri−1, we get

opt =
∑
i

opti ≥
∑
i

|Ri \Ri−1| − |Oi \Ri−1|+ |Oi+1 \Ri|
2

≥ 1

2

∑
i

|Ri \Ri−1| − k.

Now, let’s analyze the performance of the algorithm. In every phase i it needs to move servers to every
point in Ri \Ri−1. The points in Ri ∩Ri−1 may or may not have a server on them when the are requested.
Let’s upper bound the probability that a point in Ri∩Ri−1 does not have a server on it when it is requested.
The worst thing that can happen is that all the points in Ri \ Ri−1 are requested before any of the points
that have a server on them. The first point that is requested in Ri ∩Ri−1 does not have a server on it with
probability at most the probability that one of the points in Ri\Ri−1 got its server, i.e. at most |Ri\Ri−1|/k.
After this request, we now know that there is a marked server on this point, and |Ri \ Ri−1| more points.
We will now imagine that this point has the same server as at the start of the phase maybe by swapping two
servers. The next distinct point that is requested in Ri ∩Ri−1 does not have a server on it with probability
at most the probability that its server is now on one of the points in Ri \ Ri−1, i.e., probability at most
|Ri \ Ri−1|/(k − 1). In general, the (j + 1)st distinct point that is requested in Ri ∩ Ri−1 does not have a
server on it with probability at most the probability that its server is now on one of the points in Ri \Ri−1
(after swapping), i.e., probability at most |Ri \Ri−1|/(k − j).

So we get an upperbound on the number of moves by the algorithm in phase i for the points in Ri∩Ri−1

of
∑|Ri∩Ri−1|−1

j=0 |Ri\Ri−1|/(k−j) =
∑k

j=|Ri\Ri−1|+1
1
j |Ri\Ri−1| ≤ (Hk−1)|Ri\Ri−1|, where Hk =

∑
j 1/k,

because |Ri \ Ri−1| ≥ 1 by the definition of phases. Adding one move for each point in Ri \ Ri−1 gives an
upper bound of Hk|Ri \Ri−1|.

3 Lower bound

We will now show that any randomized algorithm can be at best Hk-competitive.
We will show a lower bound where the number of points is k+1. We define the following random request

sequence: at every time step a point is chosen uniformly at random from all points.
For any algorithm that cannot look ahead, the probability that this point does not have a server on it

is 1/(k + 1), namely the probability that it is not equal to the points that have a server on them, of which
there are k. (Note that the point is chosen uniformly at random.)

The offline optimum does the following: it divides the input sequence into phases as described in the
previous section. At the start of each phase the server is moved from the node at the start of the next phase
to the point at the start of this phase, i.e., the optimal algorithm has a cost of 1 for each phase. (All other
points will be requested in this phase.)

The expected cost of any algorithm that cannot look ahead is 1/(k + 1) times the expected length of a
phase (by Wald’s equation). The expected length of a phase is (k + 1)Hk+1 − 1, from the coupon collector’s
problem, where we don’t count the last “coupon”. So the expected cost in a phase is Hk+1−1/(k+1) = Hk.

2

