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Stochastic Program

Consider the Stochastic Program

minimize cTx+ Eξ(q(ωi)
T y(ωi))

s.t. Ax = b

Wy(ωi) + T (ωi)x = h(ωi) almost surely

x ≥ 0

y(ωi) ≥ 0 almost surely.

The L-shaped method is a way of solving a Stochastic Program in the special case that the random
variable ξ takes on finitely many values, say {ω1, ω2, . . . , ωn}. In this case we can write the Stochastic
Program as a huge Linear Program:

minimize cTx+
∑
i

p(ωi)q(ωi)
T y(ωi)

s.t. Ax = b

Wy(ωi) + T (ωi)x = h(ωi) for all ωi

x ≥ 0

y(ωi) ≥ 0 for all ωi.

where p(ωi) = P (ξ = ωi), the probability that the random variable ξ is ωi.
The key insight underlying the L-shaped Method is that if x is fixed, then we could find each

y(ωi, x) by just solving the following small LP for each ωi separately:

minimize q(ωi)
T y(ωi, x)

s.t. Wy(ωi, x) = h(ωi)− T (ωi)x

y(ωi, x) ≥ 0.

We are going to replace the second stage cost q(ωi)
T y(ωi) in the objective of the Linear Program by

a variable ϑi for each ωi, and use duality to get bounds on these ϑi. The dual of the second stage LP
for a given ωi is

maximize (h(ωi)− T (ωi)x)Tπ(ωi)

s.t. W Tπ(ωi) ≤ q(ωi)
π(ωi) unrestricted.

Weak duality tells us that (for a given x), for any primal feasible y(ωi, x) and dual feasible π(ωi) we
have

(1) q(ωi)
T y(ωi, x) ≥ (h(ωi)− T (ωi)x)Tπ(ωi).

So the constraints that we want to add to the LP when we are replacing the second stage cost
q(ωi)

T y(ωi) in the objective of the Linear Program by a variable ϑi for each ωi, are

ϑi ≥ (h(ωi)− T (ωi)x)Tπ(ωi)
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for all feasible dual solutions π(ωi). In other words, every feasible solution π(ωi) gives rise to an
inequality for the variables ϑi and x, as is emphasized by rewriting the inequality as:

ϑi ≥ (h(ωi)− T (ωi)x)Tπ(ωi) = π(ωi)
T (h(ωi)− T (ωi)x) = π(ωi)

Th(ωi)− π(ωi)
TT (ωi)x

or, putting all variables on the left hand side of the inequality:

ϑi + π(ωi)
TT (ωi)x ≥ π(ωi)

Th(ωi)

for all feasible dual solutions π(ωi) to the second-stage LP for scenario ωi. Note that we have such a
family of constraints for every scenario ωi.

We have thus derived the following LP, which I will refer to as the “LP with the Ridiculous Number
of Constraints”.

minimize cTx+
∑
i

p(ωi)ϑi

s.t. Ax = b

ϑi + π(ωi)
TT (ωi)x ≥ π(ωi)

Th(ωi) for all feasible dual solutions π(ωi)

to the second-stage LP for scenario ωi,

for all scenarios ωi

x ≥ 0.

L-Shaped Method, Multicut Version

Because the “LP with the Ridiculous Number of Constraints” has a ridiculous number of constraints,
we want to find a way so that we only have to consider LPs that have only a reasonably sized subset
of these constraints. This is what the L-shaped Method is about: it iteratively adds these type of
constraints, namely exactly those that correspond to the optimal dual solutions to the second-stage
LP for all scenarios ωi for a given x.

So the method is the following: it starts with the following LP to which we will add constraints,
and which we will refer to as the “Master LP”:

minimize cTx

s.t. Ax = b

x ≥ 0.

(Note that in this first iteration there are no bounds on the ϑi variables, so we drop these variables
from the objective in this iteration.) We find an optimal x̄. We then find the optimal dual solutions
to the second-stage LP for all scenarios ωi for this x̄ — let us call these π̃1(ωi). All these are feasible
dual solutions, and so define a new constraint for ϑ and x. We add all of these constraints to the
“Master LP”, which now looks like

minimize cTx+
∑
i

p(ωi)ϑi

s.t. Ax = b

ϑi + π̃1(ωi)
TT (ωi)x ≥ π̃1(ωi)Th(ωi) for all scenarios ωi

x ≥ 0.

We solve this LP with the new constraints, giving an optimal x̄ and ϑ̄i for all i. We again find the
optimal dual solutions to the second-stage LP for all scenarios ωi for this x̄ — let us call these π̃2(ωi).
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All these are feasible dual solutions, and so define a new constraint for ϑ and x. We add all of these
constraints to the “Master LP”, which now looks like

minimize cTx+
∑
i

p(ωi)ϑi

s.t. Ax = b

ϑi + π̃1(ωi)
TT (ωi)x ≥ π̃1(ωi)Th(ωi) for all scenarios ωi

ϑi + π̃2(ωi)
TT (ωi)x ≥ π̃2(ωi)Th(ωi) for all scenarios ωi

x ≥ 0.

The method repeats these steps (solving Master LP, finding an optimal x̄ and ϑ̄i for all i, solving all
second-stage LPs for this x̄, adding the constraints that correspond to the optimal dual solutions to
the Master LP), until it finds that x̄ and ϑ̄i satisfy all newly added constraints..

Proof of Optimality

Theorem 1. If the L-shaped Method ends then the final x̄ is an optimal first-stage decision for the
Stochastic Program.

Lemma 1. Optimal objective value of the “LP with the Ridiculous Number of Constraints” is at most
the optimal objective value of the Stochastic Program.

Proof. Let x̄, ȳ(ωi) be an optimal solution to the Stochastic Program. Define ϑ̄i = q(ωi)
T ȳ(ωi) for all

i. Note that x̄, ϑ̄i is a feasible solution to the “LP with the Ridiculous Number of Constraints” by weak
duality (see equation (1)), with the same objective. In other words, for any solution to the Stochastic
Program, we can define a solution to the “LP with the Ridiculous Number of Constraints” with the
same objective, so the optimal objective value “LP with the Ridiculous Number of Constraints” can
not be more than the optimal objective value of the Stochastic Program.

Lemma 2. Optimal objective of the Master LP is at most the optimal objective of the “LP with the
Ridiculous Number of Constraints”.

Proof. The Master LP only includes a subset of the constraints of the “LP with the Ridiculous Number
of Constraints”. Therefore any feasible solution to “LP with the Ridiculous Number of Constraints”
is also feasible to the Master LP (in any iteration).

Lemma 3. If x̄ and ϑ̄i satisfy all newly added constraints in an iteration of the L-shaped Method,
then there exist ȳ(ωi) so that x̄, ȳ(ωi) is an optimal solution to the Stochastic Program.

Proof. Let π̃(ωi) be the optimal dual second-stage solutions that were used to generate the new
constraints, for all i. By strong duality, there exist feasible primal second-stage solutions ȳ(ωi, x̄) so
that q(ωi)

T ȳ(ωi, x̄) = (h(ωi)− T (ωi)x̄)T π̃(ωi) for all i.
The inequalities that were added in the last iteration are ϑi ≥ (h(ωi) − T (ωi)x)T π̃(ωi), and since

ϑ̄i and x̄ satisfy these inequalities we therefore conclude that there exist feasible primal second-stage
solutions ȳ(ωi, x̄) so that ϑ̄i ≥ q(ωi)T ȳ(ωi, x̄) for all i.

The objective of the Stochastic Program for this feasible solution x̄, ȳ(ωi) is cT x̄+
∑
i

p(ωi)q(ωi)
T ȳ(ωi, x̄) ≤

cT x̄ +
∑
i

p(ωi)ϑ̄i = optimal objective of the Master LP ≤ optimal objective of the “LP with the

Ridiculous Number of Constraints” ≤ optimal objective value of the Stochastic Program.
In other words, we have found a feasible solution to the Stochastic Program with objective at

least as good as the objective of an optimal solution, which means this solution must be an optimal
solution.
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Finite Running Time

Note that if we can choose the optimal second-stage dual solutions to be extreme points in the L-
shaped method, then the L-shaped Method is guaranteed to be finite. This is because the number of
extreme points of each of the LPs is finite, and therefore the number of constraints that can be added
is finite. After a finite number of iterations the newly added constraints were already presented at the
start of the iteration, and x̄ and ϑ̄ satisfy all constraints.

Infeasible Second-Stage LPs

Note that we can always choose the optimal second-stage dual solutions to be extreme points in the
L-shaped method if the optimal solutions of the second-stage dual LPs are bounded (finite). The only
thing to worry about is when these LPs are not bounded. By duality we know that if the second-stage
dual LP is unbounded, the second-stage primal LP is infeasible. In other words, we actually want to
exclude first-stage decisions x for which this is the case. This means it suffices to generate a constraint
for the Master LP which cuts off x̄, in case we detect that some second-stage dual LP is unbounded.

If we find that, given an x̄, the second-stage dual LP for some ωi is unbounded, then we can find
a ray r̄(ωi) so that (h(ωi)− T (ωi)x̄)T r̄(ωi) > 0. This means that to exclude this first-stage decision x̄
from consideration in the Master LP, it suffices to add the constraint

(h(ωi)− T (ωi)x)T r̄(ωi) ≤ 0.

To emphasize that this is an equality for the variables x we rewrite the inequality as

(h(ωi)− T (ωi)x)T r̄(ωi) = r̄(ωi)
T (h(ωi)− T (ωi)x) = r̄(ωi)

Th(ωi)− r̄(ωi)TT (ωi)x ≤ 0,

or

r̄(ωi)
TT (ωi)x ≥ r̄(ωi)Th(ωi).

Note that if we modify the L-shaped method so that it adds this constraint for an extreme ray
when it finds an unbounded solution to a dual of a second-stage LP (if there exists a ray, then there
exists an extreme ray), and it uses an extreme point for the second-stage dual solution if it is bounded,
then this (modified) L-shaped method is guaranteed to terminate, because there are only finitely many
extreme rays and extreme points.

Normal (One Cut) L-Shaped Method

Instead of having a variable ϑi for every scenario ωi in the Master LP, we could alternatively think
about having only one variable ϑ representing the convex combination of these (with weights equal to
the probabilities p(ωi)). Instead of adding a constraint for every second-stage LP in an iteration of the
L-shaped Method, you now add either a constraint that follows from the infeasiblity of a second-stage
LP, or one constraint if all second-stage LPs are feasible, namely the same convex combination of the
constraints that you would add in the multicut version, i.e.∑

i

p(ωi)ϑi +
∑
i

p(ωi)π̃(ωi)
TT (ωi)x ≥

∑
i

p(ωi)π̃(ωi)
Th(ωi)

and thus (because you are replacing
∑
i

p(ωi)ϑi by one variable, namely ϑ)

ϑ+
∑
i

p(ωi)π̃(ωi)
TT (ωi)x ≥

∑
i

p(ωi)π̃(ωi)
Th(ωi).

The proof of optimality and proof of termination for this procedure are analogous to the proofs for
the multicut version.
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Exercises

1. Discuss the difference between the multicut and the normal L-shaped methods, in terms of (1)
the number of variables, (2) a bound on the potential number of iterations, and (3) a bound
on the number of iterations of the methods, such that it will surely outperform just solving the
Linear Program

minimize cTx+
∑
i

p(ωi)q(ωi)
T y(ωi)

s.t. Ax = b

Wy(ωi) + T (ωi)x = h(ωi) for all ωi

x ≥ 0

y(ωi) ≥ 0 for all ωi.

Assume that solving a linear program with n variables takes n3.5 time.

Example

The following are illustrations to accompany the example of the Normal (One Cut) L-shaped Method,
that is in the textbook of Birge & Loveaux (pages 184 and beyond).

In the following figures the new constraint that is created in every iteration of the L-shaped Method
is depicted with a blue plane. Any feasible combination of x1, x2 and ϑ has a ϑ value that is at least
as large as the corresponding value on the plane (i.e., the feasible x1, x2 and ϑ lie above the plane).
The constraints are then combined to one (red) boundary, and the Master Problem is solved. The
solution to the Master Problem is indicated by a green box.

The first figure illustrates the inequality that is generated after the first iteration. This then is
the boundary of the feasible region of the Master Problem in the second iteration, and the green box
(x̄1 = 40, x̄2 = 80, ϑ̄ = −18299.2) is an optimal solution to this LP.

The constraint that is created in this second iteration of the L-shaped Method is depicted with a
blue plane in the next figure. (You can see that the optimal solution is cut off by this blue plane.)

The constraints are then combined to one (red) boundary, and the Master Problem is solved. The
solution to the Master Problem (in this third iteration) is indicated by a green box.

Solving the second-stage problem gives new extreme points for the dual LPs for the second-stage
problems, which define a new constraint on x1, x2 and ϑ (drawn again in blue).
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The method continues until the newly created constraint does not cut off the optimal solution of the
Master Program.
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