
FRT Tree Embedding

(building on Bartal’s work)

1 Introduction

In many problems there is a metric in the input, e.g., Traveling Salesman Problem, Metric Labeling Problem
and so on. Most of these problems are NP-hard for general metric spaces, and quite a few are polynomial-
time solvable for some particular metric spaces. One metric space for which many problems become easy is
the class of “tree metrics”.

Definition 1. A metric space is a pair (V, d) where d : V × V → R≥0, so that

• d(i, i) = 0 for all i ∈ V

• d(i, j) = d(j, i) for all i, j ∈ V

• d(i, j) ≤ d(i, k) + d(k, j) for all i, j, k ∈ V (triangle inequality)

• d(i, j) > 0 for all i, j ∈ V where i 6= j

Definition 2. A metric space (V, d) is a tree metric if the metric can be drawn as tree with weigths on the
edges, such that the distance between any two points i and j is exactly equal to the weight of the path from i
to j.

In general, metric spaces are often represented as weighted graphs, where the distance between any two
points i and j is then equal to the weight of the shortest path from i to j.

One method for getting an approximate solution to a problem is to approximate the metric space in the
input by an easy metric that is similar to the original metric space, but for which the problem is easy. (In
this lecture we will focus on tree metrics, but there are many other “easy” metric spaces.) We now have to
make precise what we mean by “similar to the original metric”.

Definition 3. We say a metric space (V, d) is embedded in metric space (V2, d2) with distortion γ(≥ 1) if
there is a map f : V → V2 so that 1

γ
d2(f(i), f(j)) ≤ d(i, j) ≤ γd2(f(i), f(j)).

In general it is not possible to embed any metric in a tree metric with low distortion. Karp pioneered the
idea of using a probability distribution on metric spaces to get around this problem. Bartal took this idea
and created probabilistic tree embeddings, which until a few years ago where often referred to as “Bartal’s
trees”. In 2003, Fakcharoenphol, Rao and Talwar gave a method to probabilistically embed any metric into
tree metrics with (expected) distortion was O(log n) (where n is the number of points in the metric space).
This distortion is (upto a constant factor) optimal, as Bartal also observed a lower bound on the distortion
of probabilistic tree embeddings of Ω(log n) for expander graphs.

We will now give the algorithm of FRT, and show that their method indeed gives an expected distortion
of O(log n).

2 FRT Algorithm

Input: a general metric (V, d). We assume without loss of generality that mini6=j d(i, j) = 2 (otherwise we
scale the metric such that we have this property). Let M be smallest integer so that 2M ≥ maxi,j d(i, j)
Output: a tree metric (VT , dT) where V ⊂ VT , so that d(i, j) ≤ dT (i, j) ≤ O(log |V |)d(i, j).

1

1. Pick U uniformly at random in (1, 2). Set ` ← M . Pick a permutation π of V uniformly at random.
Set C ← {V }.

2. C(1, `)← ∩B(π1, U2`) := {i ∈ V : d(i, π1) ≤ U2`},

C(2, `)← B(π2, U2`) \ C(1, U2`)

C(3, `)← B(π3, U2`) \
(

C(1, U2`) ∪ C(2, U2`)
)

etcetera. In general,

C(m, `)← B(πm, U2`) \
(
⋃m−1

k=1 C(k, `)
)

.

Now refine each set S ∈ C using these sets, by replacing S with S ∩ C(1, `), S ∩ C(2, `), etcetera.

Add a point to VT for all nonempty sets S ∈ C, and add an edge from the set in the previous iteration
that contains the set with weight U2`+1.

3. `← `− 1. If ` ≥ 1 then goto 2.

Note that πm is not necessarily contained in C(m, `), even if C(m, `) is not empty.
On the next pages is an example of a run of the algorithm. The metric space that is being embedded is

the Euclidean metric on the plane (i.e., the distance between two points is equal to what you would measure
with a ruler) of this instance:

For ease of presentation π is chosen to be the identity permutation, and in each iteration the sets in C are
visited in the order that they were created in the previous iteration.

Note that the sets are only refined in every iteration of the algorithm, and so the resulting metric will
indeed be a tree metric.

3 Analysis

We define the following random variables:

• L(i, j) =value of ` in the first iteration (i.e., maximum `) in which i and j are in different sets,

• S(i, `) =set C in which i is contained in iteration `,

• K(i, `) =center of the set that contains i in iteration ` (so B(K(i, `)) ⊃ S(i, `)).

Claim 1. dT (i, j) ≥ d(i, j) for all i, j ∈ V .

Proof. dT (i, j) ≥ 2× U2L(i,j)+1 = U2L(i,j)+2 because the path in the resulting tree from i to j will contain
two edges that are adjacent to the set S(i, L(i, j) + 1) = S(j, L(i, j) + 1). Further, the triangle inequality
gives us d(i, j) ≤ d(i,K(i, L(i, j)+1))+d(j,K(i, L(i, j)+1)) = d(i,K(i, L(i, j)+1))+d(j,K(j, L(i, j)+1)) ≤
U2L(i,j)+1 +U2L(i,j)+1 ≤ U2L(i,j)+2. So indeed we have dT (i, j) ≥ d(i, j) for all i, j ∈ V , independent of the
random choices of the algorithm.

2

end of iteration ` = M

end of iteration ` = M − 1

end of iteration ` = M − 2

3

end of iteration ` = M − 3

4

end of iteration ` = M − 4

5

We can also upper bound dT (i, j) in terms of L(i, j):

dT (i, j) = 2(U2L(i,j)+1 + U2L(i,j) + U2L(i,j)−1 + . . .+ U22),

as U2L(i,j)+1+U2L(i,j) +U2L(i,j)−1 + . . .+U22 is the length of the path from both i and j to the node that
represents S(i, L(i, j) + 1) that contains both i and j. So we have

dT (i, j) ≤ 2
∞
∑

m=0

U2L(i,j)+1−m = 8U2L(i,j) ≤ 16 2L(i,j).

Denote by D(i, j) = first according to π of K(i, L(i, j)) and K(j, L(i, j)); the center of the first set that
is created that contains only one of i and j in the first iteration where i and j are not in the same set.

We will now show E(dT (i, j)) ≤ O(log |V |)d(i, j) for all i, j ∈ V , by conditioning on D(i, j) first and
showing that conditioned on D(i, j), there are at most four possible values of L(i, j). We obtain upper
bounds on the probabilities for these events which will then give the result.

Suppose D(i, j) = K(i, L(i, j)), and let’s call it this node c. Then d(c, j) ≥ U2L(i,j). Also, by the
definition of L(i, j) (first iteration that have i and j separated) and the triangle inequality, we have d(c, j) ≤
d(c,K(c, L(i, j) + 1)) + d(K(c, L(i, j) + 1), j) ≤ U2L(i,j)+1 + d(K(j, L(i, j) + 1), j) ≤ U2L(i,j)+2, because the
sets that the algorithm creates are refinements so that K(c, L(i, j)+1) = K(i, L(i, j)+1) = K(j, L(i, j)+1).
So

2L(i,j) < d(c, j) < 2L(i,j)+3.

So for any given D(i, j), i and j, there are at most two different possibilities for the L(i, j). The same
reasoning holds for D(i, j) = K(j, L(i, j)), which gives a grand total of at most four different values for
L(i, j) with positive probabilities, given D(i, j).

Also, given D(i, j) = c, we can bound the probability that L(i, j) = ` (i and j are separated in iteration
`) by |d(c, i) − d(c, j)|/2` ≤ d(i, j)/2` by the triangle inequality (d(c, j) ≤ d(c, i) + d(i, j)), because U is
uniformly distributed in (1, 2).

So we have that

E(dT (i, j)|D(i, j) = c) ≤
∑

`

E(dT (i, j)|D(i, j) = c, L(i, j) = `)P (L(i, j) = `|D(i, j) = c)

≤
∑

`:P (L(i,j)=`|D(i,j)=c)>0

E(dT (i, j)|D(i, j) = c, L(i, j) = `)d(i, j)/2`

≤ 4× 16 2`d(i, j)/2`

= 64 d(i, j).

Finally we have to bound the probability P (D(i, j) = c) for each node c. Imagine that the nodes are
ordered in ascending min{d(i, c), d(j, c)} for a given i and j. The event D(i, j) = c implies that there is no
other node that is closer to either i or j in the permutation. So we can bound this probability by 1/rank(c).
As we sum over all nodes we get all possible rankings. Therefore we get

E(dT (i, j)) =
∑

c

EdT (i, j|D(i, j) = c)P (D(i, j) = c) ≤

n
∑

r=1

64 d(i, j)
1

r
= O(log(|V |))d(i, j).

6

