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1 Introduction

How do you aggregate the preferences of multiple agents in a fair manner? This is
a question that has occupied researchers for several centuries. Suppose we have k
voters who each give their preferences on n candidates. How should the candidates
be ranked to best represent the input? Marquis de Condorcet [5] showed that there
may not exist a “winner”: a candidate who beats all other candidates in a pairwise
majority vote. Borda [4] and Condorcet [5] (and many others after them) proposed
different ways of aggregating the preferences of the voters, and argued over which
method is the right one. Only in the middle of the 20th century, Arrow [2] showed
that there is no right method: there exists no aggregation method that simulata-
neously satisfies three natural criteria (non-dictatorship, independence of irrelevant
alternatives and Pareto efficiency).
This negative result notwithstanding, we still want to find aggregate rankings based
on voters’ inputs. In this paper, we consider the case when, rather than selecting a
winner, we would like to find a permutation of the candidates that represents the
voters’ inputs. Each voter’s input is assumed to be a permutation of the candidates,
where a candidate is ranked above another candidate, if the voter prefers the former
to the latter candidate. The goal is to find a permutation that minimizes the sum
of the distances to the voters’ permutations, where in principle any distance(-like)
function on permutations can be used, e.g. Kendall distance or Footrule distance.
Young & Levenglick [9] show that the Kendall distance is the unique distance func-
tion such that the permutation(s) that minimize it have three desirable properties of
being neutral, consistent and Condorcet. The latter property means that, if there ex-
ists a permutation such that the order of every pair of elements is the order preferred
by a majority, then this permutation has minimum distance to the voters’ permu-
tations. This distance was already proposed by Kemeny [6] for other reasons ([6]
defines axioms on the distance function, and finds that the Kendall distance adheres
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to the axioms), and the problem of finding an optimal ranking with respect to this
criterion is now known as Kemeny Rank Aggregation.
In this paper, we suggest a new way of thinking about this problem. Suppose instead
of minimizing the total distance from the voters’ inputs, we want to find a permu-
tation that makes a majority of the voters “happy”? Of course, a voter is happy
when we follow her opinion exactly, and we cannot do this simultaneously for a
majority of the voters, unless a majority of the voters is in total agreement. There-
fore, our goal is to find a permutation such that there exists no other permutation
that a majority of the voters prefer, in the sense that their distance to the alternative
permutation is smaller. We call such a permutation a popular ranking.
Unfortunately, we show that such a permutation is unlikely to exist: it only ex-
ists if Condorcet’s paradox does not occur. Even worse than this, we show that if
Condorcet’s paradox does not occur, then it may still be the case that no popular
ranking exists. The only positive news in this context is, perhaps paradoxically, an
NP-hardness result: we show that if Condorcet’s paradox does not occur, then we
can efficiently compute a permutation, which may or may not be popular, but for
which the voters will have to solve an NP-hard problem to compute a permutation
that a majority of them prefer.
Related Work: Our work is inspired by Abraham et al. [1] where the notion of
popular matchings is introduced. Popular ranking is also related to the problem
of designing a voting mechanism in which the voters do not have an incentive to
lie about their preferences. However, rather than considering deviations of a single
voter, a popular solution is robust against deviations of a majority of the voters.
We show that, if the input does not contain Condorcet’s paradox, then there is a
solution that may or may not be popular, but for which it is computationally hard
for a majority of the voters to manipulate the output to their advantage. This result
has a similar flavor as a result by Bartholdi et al. [3], who demonstrate a voting rule
for deciding the “winner” of an election, for which it is computationally hard for a
single voter to manipulate the output.

2 Popular Ranking

We are given a set of alternatives [n] (where the notation [n] means {1, 2, . . . , n})
and a set of voters [k], where each voter " has a complete ordering of the alterna-
tives. We will denote these complete orderings of a voter " as a list of the alterna-
tives, where an alternative earlier in the list is preferred to elements that succeed it,
and use the notation π−1

! : [n] → [n] (the use of “−1” will become clear shortly),
where π−1

! (i) is the alternative at position i in the ordering of voter ". Note that
we can interpret π−1

! as a permutation. Further, the inverse of π−1
! , which we will

denote by π!, is well defined and can be interpretated as the position of the alter-
natives in the list of voter ". We will use list(π!) to denote the ordered sequence
(π−1
! (1), π−1

! (2), . . . , π−1(n)).
The Kendall distance between two permutations π, σ, denoted by K(π, σ), is de-
fined as the number of pairwise disagreements of π and σ, i.e. K(π, σ) = #{i, j :
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π(i) < π(j) and σ(i) > σ(j)} + #{i, j : π(i) > π(j) and σ(i) < σ(j)}.
Definition 2.1 We say a permutation π is popular, if * ∃π ′ such that K(π!, π′) <
K(π!, π) for a strict majority of the voters " ∈ [k].
We define the majority graph G = (V, A) for an instance as the directed graph
which has a vertex for every i ∈ [n] and an arc (i, j) if a majority of the voters
" ∈ [k] has π!(i) < π!(j). Condorcet observed that such a graph may have a cycle;
this is known as “Concorcet’s paradox”.
Lemma 2.1 No popular ranking exists if the majority graph has a directed cycle.
Proof (sketch) (sketch) If we order the elements from left to right according to a
ranking π, then there must be some arc (i, j) in the graph that is a back arc, i.e.
for which π(j) < π(i). Let π′ be the permutation we obtain by swapping i and
j, i.e. π′(i) = π(j), π′(j) = π(i) and π′(t) = π(t) for all t *= i, j. Then one can
show that a strict majority of the voters prefer π ′ to π, namely the voters " who have
π!(i) < π!(j).
If the majority graph is acyclic, then a popular ranking could exist. We consider the
case when the majority graph is a tournament, i.e. for every i, j exactly one of the
arcs (i, j) and (j, i) is in G. Note that the majority graph is always a tournament
if the number of voters is odd. By Lemma 2.1, the only permutation that could be
popular is the permutation we obtain by topologically sorting the majority tourna-
ment. However, it is not the case that this ranking is always a popular ranking, as
we show in the full version of this paper [8].Even though the topologically sort of
the majority tournament is not necessarily a popular ranking, it turns out that it is
a “good” permutation in the sense that it is NP-hard to find a ranking that a ma-
jority of the voters prefer. The proof of the following theorem is given in the full
version [8].
Theorem 2.2 Given an input to the popular rank aggregation problem with an
acyclic majority graph, it is NP-hard to find a ranking ρ that a majority of the
voters S prefers to a topological sort of the majority graph, even if S is given.

3 Directions

We have seen that a popular ranking does not always exist, even if the majority
graph has no cycles. Perhaps popularity is asking for too much and we should relax
our objective. It is an interesting question whether there exists a suitable relaxation
of the notion of popularity, so that one can get positive results. One way of relaxing
the notion is looking for rankings with least-unpopularity-factor (McCutchen [7]
introduced this notion for matchings). The bad news is that it can be shown that
the unpopularity factor of the permutation π we obtain by topologically sorting the
majority tournament may be unbounded. It is an open question however whether
there exists a permutation with bounded unpopularity (and if so, what this uniform
bound is) and whether such a permutation can be found in polynomial time.
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