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Abstract

The transition matrix of the Markov chain describing card shuffling (“shuffle matrix”) is studied. The
authors propose a method to compute (a subset of) the eigenvalues of a shuffle matrix, which is a
generalization of a method proposed by Doner and Uppuluri [2]. The method works by defining Markov
chains with smaller state spaces than the original state space, the transition matrices of which have
eigenvalues which are a subset of the eigenvalues of the shuffle matrix.
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1 Introduction

Shuffling has been an object of mathematical study for decades. It is easily seen, that card shuffling is

a Markov chain: the result of a shuffle only depends on the order of the deck right before the shuffle is

performed, and the shuffle method employed. The state space of this Markov chain, however, is gigantic,

namely the number of permutations of the number of cards used.

This Markov chain’s transition matrix has a special structure, which can be exploited for computing

eigenvalues. In this note we give a generalization of a method proposed by Doner and Uppuluri [2], which

exploits this structure. This generalization allows the computation of more eigenvalues than the original

method. This raises the question whether all eigenvalues can be found this way, a question which we have

not been able to answer.

Following Doner and Uppuluri [2], we study a “projection” of the shuffling process: the state space

of this projection is obtained by partitioning the original state space. Note that this new process is not

necessarily Markovian. Doner and Uppuluri [2] show that, if this new process is Markovian, the eigenvalues

of the transition matrix of this Markov chain are a subset of the eigenvalues of the transition matrix of

the original Markov chain. They show that for a very particular partition of the state space, the process is

indeed Markovian, and moreover, that the transition matrix of this process is centrosymmetric, allowing a

further speedup of the computation of the eigenvalues following Collar [1].

We will show that there are multiple ways of partitioning the state space, such that the random process

defined on the partitions is Markovian, and the transition matrices corresponding to these Markov chains

are centrosymmetric.

In our exploration, we stumbled upon a property of cyclic subgroups, which, to our knowledge, was not

documented, yet.
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2 Partitioning the state space of a shuffling process

For ease of notation, we will assume henceforth that the cards are numbered 1, . . . , n.

Notation We will write π = (π(1) π(2) · · · π(n)) for a permutation of length n, where π(j) is the number

on the card in position j. We denote the algebraic inverse of π by π−1. For the set of all permutations of

length n, we will use the usual notation Sn.

We define a shuffling method as a probability distribution on the operations that can be performed on

a deck of cards. Note that the operations that can be performed can also be denoted by permutations of

length n (one could also view these as the resulting order of the deck, if the order of the deck before shuffling

was (1 2 3 . . . n)). We will thus use permutations to denote both the ordering of a deck, as well as the

rearranging action.

Example of notation A deck in order (1 4 3 2) is shuffled using action (2 4 1 3). This results in the order

(1 4 3 2)(2 4 1 3) = (4 2 1 3).

More notation Henceforth, we will assume that the state space is ordered lexicographically. Denote the

permutations in lexicographical order as π1, π2, . . . , πn!.

Let M be the transition matrix of the shuffling process. Note that Mij
def
= IP(πi → πj) = IP(action (π−1

i πj)) =

IP(π1 → π−1
i πj), using obvious notation. Note that there are at most n! distinct entries in the transition

matrix. Moreover, these entries are repeated in each row of the matrix (in a different order), as well as in

each column.

A small example For clarity, we give the transition matrix of a shuffle process, for n = 3. We will use

pk = IP(π1 → πk) = IP(action πk).

(123)
(132)
(213)
(231)
(312)
(321)





















(123) (132) (213) (231) (312) (321)
p1 p2 p3 p4 p5 p6

p2 p1 p5 p6 p3 p4

p3 p4 p1 p2 p6 p5

p5 p6 p2 p1 p4 p3

p4 p3 p6 p5 p1 p2

p6 p5 p4 p3 p2 p1
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Definition Let ϑ be a permutation of length n. This permutation defines a partitioning of the state space

in the following manner: πi and πj are in the same partition iff there exists an ℓ such that πi = ϑℓπj . We

denote the partitions by P1, P2, . . . , Pm.

We now consider the shuffling process restricted to a partitioning of the state space, and show that the

process of moving from one partition to another is a Markov chain. Our next lemma is a generalization of

Theorem 5 of Doner and Uppuluri [2].

Lemma The shuffling process restricted to the partitions is a Markov chain.

Proof We need to show that the transition probabilities only depend on the partitions, from which and to

which the transition takes place.

Consider the probability for the transition between partitions Pi and Pj . Let σ be any permutation in

Pi and τ any permutation in Pj . Note that Pi = {σ, ϑσ, ϑ2σ, . . . , ϑk−1σ}, where k is the smallest natural

number such that ϑk+1 = ϑ (i.e. k is the order if ϑ). Similarly, Pj = {τ, ϑτ, ϑ2τ, . . . , ϑk−1τ}. Note that

IP(σ → Pj) =

k−1
∑

ℓ=0

IP(σ → ϑℓτ) =

k−1
∑

ℓ=0

IP(action (σ−1ϑℓτ)). For the other permutations in Pi, we have

IP(ϑrσ → Pj) =
k−1
∑

ℓ=0

IP(ϑrσ → ϑℓτ) (1)

=
k−1
∑

ℓ=0

IP(action (σ−1ϑℓ−rτ)) (2)

=

k−1
∑

ℓ′=0

IP(action (σ−1ϑℓ′τ)) (3)

= IP(σ → Pj). (4)

Therefore, the transition probabilities indeed only depend on the relevant partitions. �

Note that there are no assumptions needed on ϑ, contrary to the assumptions stated by Doner and

Uppuluri [2] in their Theorem 5.

Lemma (Doner and Uppuluri [2]) The eigenvalues of the transition matrix of the new Markov chain form

a subset of the eigenvalues of the shuffling process.
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We will now show that the transition matrix of the new process is centrosymmetric, when the partitions

are ordered in a suitable way. For this, the next lemma is key. We will use the following notation.

Let R = {ρ1, ρ2, . . . , ρr}, where ρi ∈ Sn for all i. We define

σR := {σρ1, σρ2, . . . , σρr} (5)

(Rσ is similarly defined).

Denote by Θ := {ϑ, ϑ2, . . . , ϑk} (where k is the order of ϑ) the cyclic subgroup with generator ϑ. We

recall the definition of the normalizer of Θ in Sn, which we will denote by NSn
(Θ):

NSn
(Θ)

def
= {ν ∈ Sn : ν−1Θν = Θ} (6)

Lemma NSn
(Θ) ( Θ for n ≥ 4.

Proof We will construct a ν 6∈ Θ, such that ν−1Θν = Θ. Consider the disjoint cycle decomposition of ϑ.

We discern three cases:

(i) Suppose there is a cycle of length ℓ ≥ 3, say (c1 c2 . . . cℓ). We construct ν to have the cycles (c1 cℓ),

(c2 cℓ−1), . . . , (cℓ/2 cℓ/2+1) for ℓ even, or (c1 cℓ), (c2 cℓ−1), . . . , (c(ℓ+1)/2−1 c(ℓ+1)/2+1), (c(ℓ+1)/2) for ℓ

odd. In other words, we set the c1th element of ν to cℓ and the cℓth to c1, and we set the c2th element

of ν to cℓ−1 and the cℓ−1th to c2, etcetera.

For the other cycles (c′1 c′2 . . . c′ℓ′), we set the c′ith element of ν to c′j , where j ≡ (k − 1)(i − 1) + 1

(mod ℓ′). Note that this indeed fully prescribes all the elements of ν.

We now have to prove that (1) ν 6∈ Θ and (2) ν−1Θν = Θ.

(1) Consider an element in Θ, say ϑr. Note the cycle involving c1 in ϑr is (c1 cj1 cj2 . . . cjℓ
), where

ji ≡ ir + 1 (mod ℓ). The cylce involving c1 in ν is (c1 cℓ). For ν and ϑr to be equal, these

have to be equal, which implies ℓ ≡ r + 1 (mod ℓ) and 1 ≡ 2r + 1 (mod ℓ). This implies r ≡ 1

(mod ℓ), but we know for these r, ϑr contains the cycle (c1 c2 . . . cℓ), which is not equal to

(c1 cℓ), since we assumed ℓ ≥ 3.
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(2) We’ll prove the equivalent statement νΘν−1 = Θ. Note that νϑν−1 contains the cycle (cℓ cℓ−1 . . . c1).

This, of course, is a cycle of ϑℓ−1, but also of ϑk−1, since ℓ is a divisor of k. And by construction,

the other cycles of νϑν−1 are also cycle of ϑk−1. Thus

νϑν−1 = ϑk−1. (7)

This implies νΘν−1 = Θ, since

νϑrν−1 = ν(ν−1ϑk−1ν)rν−1 (8)

= ϑr(k−1) (9)

and the fact that k and k − 1 are coprime.

(ii) Suppose there exist at least two cycles of length 2. Let ν be the permutation which only consists of

one of these transpositions. Both ν 6∈ Θ and ν−1Θν = Θ are immediately clear.

(iii) Suppose there exist at least two cycles of length 1. Let ν be the permutation which only consists of

one transposition of two elements that form cycles of length 1.

Note that for any permutation of length n ≥ 4, indeed at least one of the above cases applies. �

Corollary The transition matrix on the partitions is centrosymmetric, when the partitions are ordered in

a suitable way.

Proof Let M̄ be the transition matrix on the partitions, i.e. M̄ij = IP(πi → Pj) for any πi ∈ Pi. It suffices

to show that there exists a ν such that νPi = Pm+1−i for all i = 1, 2, . . . , m, where m is the number of

partitions. This is because for any πi ∈ Pi, we have

M̄m+1−i,m+1−j = IP(νπi → Pm+1−j) (since νπi ∈ Pm+1−i) (10)

= IP(νπi → νPj) (11)

=
∑

σ∈Pj

IP(action (νπi)
−1νσ) (12)

=
∑

σ∈Pj

IP(action π−1
i ν−1νσ) (13)
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=
∑

σ∈Pj

IP(action π−1
i σ) (14)

=
∑

σ∈Pj

IP(πi → σ) (15)

= IP(πi → Pj) (16)

= M̄ij , (17)

i.e. M̄ is centrosymmetric.

Let πi be any element of Pi. Consider a ν ∈ NSn
(Θ)\Θ. Note that (by definition of NSn

(Θ)), we have

νΘ = Θν. Therefore

νPi = νΘπi = Θνπi = Θπj, (18)

for some πj 6∈ Pi, since ν 6∈ Θ.

The above gives a recipe for creating a centrosymmetric matrix: Start with any partition Pi (permutation

πi). Its “antipode” is νPi (νπi) (this is trivially unique for each partition). Fix the position (number) of

these partitions, and take a new partition, that is not fixed yet. Repeat this process, until the order of the

partitions is found. �

Summarizing, we have devised a method to find a Markov chain with a smaller state space (of size n!/k,

where k is the order of ϑ), which has eigenvalues which form a subset of the eigenvalues of the shuffle process.

Furthermore, the transition matrix of this new Markov chain can be made centrosymmetric, and therefore,

using the method from Collar [1], we can consider two matrices of size (n!/(2k)×n!/(2k)), when computing

the eigenvalues.

The question is which ϑ’s to use. It turns out that we don’t have to consider all ϑ ∈ Sn:

Lemma ϑ and σϑσ−1 give rise to the same transition matrix (except for reordering), for all σ.

Proof Note that the partitions induced by σϑσ−1, are exactly σP1, σP2, . . . , σPm, where P1, P2, . . . , Pm

are the partitions induced by ϑ. Now it is easy to see that the shuffling actions that transform a permutation

in Pi to the permutations in Pj , will also transform a permutation in σPi to the permutations in σPj . The
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transition matrices will therefore be same, when suitably ordered. �

Recall the wellknown fact that two permutations are conjugates, iff the sets of cycle lengths of both

permutations are equal. This implies that we only need to consider all possible ϑ’s with different cycle

lengths to create the smaller matrices.

An interesting open question is whether all eigenvalues of the shuffle matrix can be obtained by just

looking at the eigenvalues of the transition matrix of the “partition processes” for all ϑ not equal to the

identity.

3 Summary

We proposed a method for computing eigenvalues of a shuffle matrix in an easier way, by looking at a Markov

chain on a collapsed state space. In our exposition of the method, we show that NSn
(Θ) ( Θ for n ≥ 4, a

fact that the authors have not encountered in the literature.
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