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Abstract. We study algorithms for clustering data that were recently
proposed by Balcan, Blum and Gupta in SODA’09 [4] and that have
already given rise to two follow-up papers. The input for the clustering
problem consists of points in a metric space and a number k, specifying
the desired number of clusters. The algorithms find a clustering that
is provably close to a target clustering, provided that the instance has
the “(1+ a, &)-property”, which means that the instance is such that all
solutions to the k-median problem for which the objective value is at most
(1 + «) times the optimal objective value correspond to clusterings that
misclassify at most an ¢ fraction of the points with respect to the target
clustering. We investigate the theoretical and practical implications of
their results.

Our main contributions are as follows. First, we show that instances
that have the (1+ a, €)-property and for which, additionally, the clusters
in the target clustering are large, are easier than general instances: the
algorithm proposed in [4] is a constant factor approximation algorithm
with an approximation guarantee that is better than the known hardness
of approximation for general instances. Further, we show that it is IV P-
hard to check if an instance satisfies the (1 + «, &)-property for a given
(a,€); the algorithms in [4] need such a and e as input parameters,
however. We propose ways to use their algorithms even if we do not know
values of a and ¢ for which the assumption holds. Finally, we implement
these methods and other popular methods, and test them on real world
data sets. We find that on these data sets there are no a and ¢ so that
the dataset has both (1 + «, €)-property and sufficiently large clusters in
the target solution. For the general case, we show that on our data sets
the performance guarantee proved by [4] is meaningless for the values
of a, e such that the data set has the (1 + o, ¢)-property. The algorithm
nonetheless gives reasonable results, although it is outperformed by other
methods.
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1 Introduction

Clustering is an important problem which has applications in many situations
where we try to make sense of large amounts of data, such as in biology, mar-
keting, information retrieval, et cetera. A common approach is to infer a dis-
tance function on the data points based on the observations, and then to try
to find the correct clustering by solving an optimization problem such as the
k-median problem, k-means problem or min-sum clustering problem. Unfortu-
nately, these three optimization problems are all N P-hard, hence we do not
expect to find algorithms that find the optimal solution in polynomial time. Re-
search has therefore focused on finding good heuristics (such as for example the
popular k-means++ algorithm [1]), exact methods (see for example [8]), and ap-
proximation algorithms: polynomial time algorithms that come with a guarantee
[ that the returned solution has objective value at most 3 times the optimum
value. Research into approximation algorithms for these three clustering prob-
lems has produced a large number of papers that demonstrate approximation
algorithms as well as lower bounds on the best possible guarantee. However, in
many cases there is still a gap between the best known approximation algorithm
and the best known lower bound.

In a recent paper, Balcan, Blum and Vempala [5] (see also Balcan, Blum and
Gupta [4]) observe the following: The optimization problems that we try to solve
are just proxies for the real problem, namely, finding the “right” clustering of the
data. Hence, if researchers try so hard to find better approximation algorithms,
that must mean that we believe that this will help us find clusterings that are
closer to the target clustering. More precisely, Balcan, Blum and Vempala [5]
turn this implicit belief into the following explicit assumption: there exist a >
0,e > 0 such that any solution with objective value at most (1 + «) times the
optimum value misclassifies at most an ¢ fraction of the points (with respect
to the unknown target clustering). We will call this the (1 4+ «, )-property. By
making this implicit assumption explicit, Balcan et al. [4] are able to show that,
given («,e) such that the (1 + «a,¢)-property holds, quite simple algorithms
will give a clustering that misclassifies at most an O(e)-fraction of the points.
In the case when the clusters in the target clustering are “large” (where the
required size is a function of £/«a), they give an algorithm that misclassifies at
most an € fraction of the points. In the general case, they give an algorithm that
misclassifies at most an O(e/«)-fraction. They do not need better approximation
algorithms for the k-median problem to achieve these results: in fact, [4] shows
that finding a (1 4+ a)-approximation algorithm does not become easier if the
instance satisfies the (1 + «, €)-property.

These results seem quite exciting, because they allow us to approximate the
target clustering without approximating the objective value of the corresponding
optimization problem. As Balcan et al. [4] point out, especially if approximating
the objective to within the desired accuracy is hard, we have no choice but to
“bypass” the objective value if we want to approximate the target clustering.

However, it is not immediately clear how useful these results are in practice.
A first concern is that the algorithms need parameters o and € such that the



instance satisfies the (1 + «,¢)-property. The paper by Balcan et al. [4] gives
no suggestions on how a practitioner can find such a and . And of course
an interesting question is whether these new algorithms outperform previously
known methods in approximating the target clustering, if we do know « and ¢,
especially in the case when « is smaller than the guarantee of the best known
approximation algorithm.

In this paper, we set out to investigate practical and theoretical implications
of the algorithms in Balcan et al. [4] We now briefly describe our contributions.

1.1 Owur Contributions

We focus on the case when the optimization problem we need to solve is the
k-median problem. Our main theoretical contribution is a proof that the algo-
rithm for “large clusters” given by Balcan et al. [4] is in fact an approximation
algorithm with a guarantee 1 + ﬁ One could argue that the algorithm of
Balcan et al. [4] is most interesting when o < 2 (since for oo > 2 one can use
the algorithm of Arya et al. [2] to obtain the claimed result), and hence in those
cases their algorithm has an approximation guarantee of at most %. However, for
the general case of the k-median problem, there is a hardness of approximation
of 14+ 1 [11]. As 14+ 1 ~ 1.37 is larger than 3, this means that these instances
are provably easier than the general class of instances. We note that Balcan et
al. [4] show that approximating the k-median objective does not become easier
if we are guaranteed that the instance has the (14 «a, £)-property. We show that
it does become easier for those instances that have the (1 + a,¢)-property and
for which the clusters in the target clustering are “large”.

For the general case, we show that it is N P-hard to check whether a data
sets satisfies the (1 4 a, &)-property for a given «, e; however, knowledge of such
parameters is necessary to run the algorithm of Balcan et al. [4].

We implement the algorithms of Balcan et al. [4] and compare the results
to the outcome of previously known methods for various real world data sets.
We show how to efficiently run the algorithms for all possible values of the
parameters (a,e) (regardless of whether the assumption holds for the pair of
values), and suggest a heuristic for choosing a good solution among the generated
clusterings. The algorithm for “large clusters” fails to find a solution on any of our
instances and for any value of the parameters «, €. The algorithm for the general
case, however, does return reasonably good solutions. We compare these results
to other methods, and find that they are reasonable, but that there are other
methods, both heuristics and approximation algorithms, which are significantly
better both in terms of approximating the target clustering and approximating
the k-median objective.

We also show how to enumerate all values of «,e for which the (1 4+ a,¢)-
property holds, which we note are not practical as they need or calculate the
optimal k-median solution. We find that indeed our data sets never satisfy the
(1 + a,¢)-property and the large clusters assumption. For the general case, we
find that the proven guarantee on the misclassification of O(e/«) is greater than
one.



1.2 Related Work

Due to space constraints, we focus our discussion on research that is similar in
spirit to our work, in the sense that it restricts the input space and uses these
additional assumptions to obtain improved algorithmic results.

Balcan, Blum and Vempala [5] study the problem of approximating an un-
known target clustering given a distance metric on the points. They identify
properties of the distance metric that allow us to approximate an unknown tar-
get clustering. One of the properties they define is the (1 + «, €)-property which
is exploited by Balcan, Blum and Gupta [4] to find clusterings that are provably
close to the target clustering. We describe their work in more detail in the next
section. Two follow-up papers have extended their results in two directions: Bal-
can, Roglin and Teng [7] consider the setting where all but a 7-fraction of the
points have the (1 + «, ¢)-property and this y-fraction of points is adversarially
chosen. Balcan and Braverman [6] improve the results in [4] if the goal is to
approximate the target clustering and the input satisfies the (1 + «, €)-property
with respect tot the min-sum objective.

Ostrovsky, Rabani, Schulman and Swamy [15] identify natural properties
under which variants of Lloyd’s algorithm are guaranteed to quickly find near-
optimal solutions to the k-means problem. The recent paper of Bilu and Linial [10]
gives polynomial time algorithms for a certain class of inputs to the max-cut
problem, which they call “stable” instances. There are strong similarities be-
tween [4] and [10]: both approaches define classes of inputs, for which they can
give algorithms that perform better than what is possible for general instances.
In fact, it is possible to show that the (1 + «,¢)-property implies a stability
property in similar vein to the stability property defined in [10]. Theorem 1 in
this paper shows that the class of inputs defined by (1+ «, €)-property combined
with the assumption that the clusters of the target clustering are large, is easier
to approximate than general instances of the k-median problem.

2 Problem Definition

2.1 k-median Problem

In the k-median problem, we are given a set of elements X and a distance
function d : X x X — RZ2% which forms a metric (i.e., d satisfies the triangle
inequality), a subset of elements V' C X that need to be covered and a parameter
k € N. We denote |V| = n. The goal is to choose k cluster centers vy, ...,v, € X
so as to minimize ), o, ming—1 . d(u,v;).

We denote by OPT the optimum ojective value of a given instance, and we
say an algorithm is an J-approximation algorithm for the k-median problem if

for any instance it is guaranteed to output cluster centers vy,...,vx € X so that
Y wey Ming—1 . xd(u,v;) < BOPT.



2.2 Setting of Balcan, Blum and Gupta

In the setting considered by Balcan et al. [4], an instance also includes an un-
known target clustering, i.e. a partition C7,...,C; of V. We say a clustering
Ci,...,Ck is e-close to the target clustering, if there exists a permutation m
such that 1 Zle |Ci\Cr(iy| < €. The misclassification is defined as the smallest
¢ such that the clustering is e-close to the target clustering.

When clustering data into k clusters, an often used approach is to define a
distance function on the data based on observations, and to solve an optimization
problem (for example, the k-median problem) to obtain a clustering. Balcan et
al. [4] argue that the quest for better approximation algorithms thus implies a
belief that better approximations will result in solutions that are closer to the
unknown target clustering. They formalize this implicit belief into the following
property.

Definition 1 ((1 + «,¢)-property). An instance satisfies the (1+a, €)-property,
if any k-median solution with objective value at most (1 4+ «)OPT is e-close to
the target clustering.

Balcan et al. [4] propose and analyze two algorithms: the first one is for
instances that both satisfy the (1+ «, ¢)-property and additionally are such that
the clusters in the target clustering are of size at least (3 + 10/a)en + 2. This
algorithm needs «, € and OPT as inputs. (There is a way to get around having to
give OPT as an input, as is shown in [4].) The algorithm is guaranteed to return
a clustering that is e-close to the target clustering.

The second algorithm is for instances that (just) satisfy the (14« €)-property.
This algorithm is remarkably simple, but also assumes knowledge of «, € and
OPT. This algorithm for the less restricted input space is guaranteed to return
a clustering that is O(e/a)-close to the target clustering. Instead of OPT an ap-
proximate value can be used, at the cost of a deteriorating guarantee: If the
value is guaranteed to be at most SOPT, then the misclassification guarantee
becomes O(eB3/a). In the remainder of this paper, we will use the abbreviations
BBGlarge and BBGgeneral to refer to these algorithms.

Instead of working with the (1 + «, €)-property directly, it is usually easier to
work with a weaker property that is implied by the (1+ «, €)-property (as shown
in Lemma 3.1 in [4]). We will refer to this as the “weak (1 + «,¢)-property”.
Note that this weaker property does not depend on a target clustering.

Definition 2 (weak (1 + «a,)-property if all clusters in the target clus-
tering have more than 2en points). In the optimal k-median solution, there
are at most en points for which the second closest center is strictly less than
aOPT/(en) farther than the closest center.

Definition 3 (weak (1 + «,¢)-property). In the optimal k-median solution,
there are at most 6en points for which the second closest center is strictly less
than aOPT/(2en) farther than the closest center.



3 Theoretical Aspects of the BBG Algorithms

We now show that in fact the algorithm BBGlarge succeeds in finding a solution
which not only has a classification error of at most €, but is also an approximately
optimal k-median solution.

Theorem 1. If the k-median instance satisfies the (1 4 «, )-property and each
cluster in the target clustering has size at least (3 4+ 10/a)en + 2, then the algo-
rithm for large clusters proposed by Balcan et al. [4] gives a (1 +1/(1/2+5/a))-
approximation algorithm for k-median clustering.

Proof (sketch). In the proof of the fact that the algorithm for large clusters only
misclassifies an e fraction of the points, Balcan et al. [4] distinguish two types
of points; red points, and non-red (green or yellow) points. They show that the
only points that are potentially misclassified are the red points, and there are
only en red points.

To show the approximation result, we first repeat the final step of their
algorithm: Given clusters C1, ..., C, we compute for each point = the index j(x)
of the cluster that minimizes the median distance from x. The new clustering is
obtained by letting €} = {x : j(x) = j}. It follows from the analysis of Balcan et
al. [4] that the new clustering again only misclassifies red points. Moreover, we
know that for each misclassified red point x, (say in cluster ¢ instead of cluster
j), there is a large number of “good reasons” why we made this mistake: pairs of
non-red points y(¢),y(j) where y(4) is in cluster ¢ and y(j) is in cluster j, and x
is closer to y(i) than to y(j). In order to prove an approximation guarantee, we
need to bound (or “charge”) the difference between the distance from x to its
cluster center in our solution and in the optimal solution. By using the triangle
inequality, it is not hard to show that we can charge this difference against the
sum of the distances from y(i) and y(j) to their respective cluster centers. Since
y(i) and y(j) are non-red, and hence correctly clustered, we charge against a
piece of the optimal solution. And, since there are “many” pairs y(i),y(j), we
only need to charge each piece a “small” number of times, where small turns
out to be 1/(1/2 + 5/a)). We refer the reader to the full version [16] for further
details. ad

We note that, although we need to know values of a, € to get the guaranteed
bound on misclassification, we do not need it to obtain the approximation result
in Theorem 1: It is not hard to show that we can try all relevant values of o and
€ in polynomial time, and get the approximation result by returning the solution
with smallest objective value.

We finally remark that the algorithms proposed by Balcan et al. [4] are most
interesting for instances with a (1 + «,¢)-property with o < 2: if @ > 2 then
we could then find an e-close clustering by running a (3 + 2/p)-approximation
algorithm [2] for sufficiently large p. Hence for those « for which the Balcan et
al. algorithms are interesting, we have shown that the large clusters algorithm

4

gives a 3-approximation algorithm.



Our second result in this section is to show that verifying if an instance has
the (14 «, g)-property for a given «, ¢ is N P-hard. The proof is a reduction from
max k-cover, and is given in the appendix of the full version of this paper [16].

Lemma 1. It is NP-hard to verify whether an instance has the (weak) (1+a,¢)-
property for a given a,e€.

We should remark two things about Lemma 1. First of all, in our proof we
need to choose a & ¢/n?. In that case, the guarantee given by Balcan et al. [4]
is O(e/a) = O(n?), hence this does not constitute an interesting case for their
algorithm. Second, our lemma does not say that it is N P-hard to find some «, ¢
for which the (1 + a, ¢)-property holds. However, we do not know how to find
such a, ¢ efficiently.

4 Practical Aspects of the BBG Algorithms

4.1 Data Sets

We use two popular sets of data to test the algorithms, and compare their out-
comes to other methods. We use the pmed data sets from the OR-Library [9]
to investigate whether the methods proposed by Balcan et al. [4] give improved
performance on commonly used k-median data sets compared to known algo-
rithms in either misclassification, objective value or performance relative to the
running time. These instances are distance based but do not have a ground truth
clustering. Note that the (1 + «,¢)-property implies that the optimal k-median
clustering is e-close to the target clustering (whatever the target clustering is),
hence we can assume that the optimal k-median clustering is the target clus-
tering while changing the misclassification of any solution with respect to the
target by at most €.

The second data sets we use come from the University of California, Irivine
(UCI) Machine Learning Repository [3]. For these data sets a ground truth
clustering is known and given. The data sets we use have only numeric attributes
and no missing values. To get a distance functions, we first apply a “z-transform”
on each of the dimensions, i.e., for each attribute we normalize the values to have
mean 0 and standard deviation 1. Next, we calculate the Euclidean distance
between each pair of points. We note that it may be possible to define distance
functions that give better results in terms of approximating the target clustering.
This is not within the scope of this paper, as we are only interested in comparing
the performance of different algorithms for a given distance function.

4.2 Implementing the BBG Algorithms

Balcan et al. [4] do not discuss how to find values of o and ¢ to use. Indeed,
Lemma 1 gives an indication that this may be far from trivial. It is not hard
to realize however, that by varying o and ¢, both the algorithms can generate
only a polynomial number of different outcomes: In the case of BBGgeneral, o



and ¢ are used only to determine a threshold graph, for which there are only
O(n?) possibilities. In the case of BBGlarge, a second graph is formed, which
connects vertices that have at least b neighbors in the threshold graph, where
b is a function of o and e. This leads to a total of O(n?) possible outcomes for
the BBGlarge algorithm. We therefore propose bypassing the fact that we do
not know which values of a and € to use by iterating over all possible outcomes.
By being careful in the implementation, it is possible to get reasonably efficient
algorithms; we refer the interested reader to the full version of this paper [16]
for more details.

For the algorithm for the large clusters case, we found a somewhat surprising
outcome: it did not return any clustering on any instance! This means that there
exists no «, € such that the data satisfied the (1+ «, €)-property and the clusters
in the target clustering had size at least (3 + 10/a)en + 2.

For the algorithm for the general case, our implementation ideas reduce the
number of solutions to consider from O(n?) to a much smaller number; at most
5% of the maximum possible number of solutions n(n—1)/2. Our next challenge
is how to choose a good solution, that is close to the target clustering. A natural
choice is to choose the outcome C1,...,C) with the lowest k-median objective
value defined as Zle mincex Y _,ec, d(c,v). The following lemma shows that
unfortunately the k-median objective is not always a reliable indicator of the
best solution. The proof is given in the full version of this paper [16].

Lemma 2. For a given instance, let § be the misclassification of the solution
with lowest k-median objective value among all outcomes obtained by the BBGgen-
eral algorithm for all threshold graphs. Then 6 # O(e/«), even if the instance
has the weak (1 + «, €)-property.

We tried several other criteria for choosing a solution, which are inspired by
the analysis of Balcan et al. [4]. None of these criteria is guaranteed to choose a
solution with small misclassification, but some of them, including the k-median
objective value, seem to work quite well in practice. Since the k-median objective
value is quick to evaluate, we chose this criterion for our experimental compar-
ison: on average, the misclassification of the best solution among all solutions
generated is 6 percentage points lower than the misclassification of the solution
with the best k-median objective value.

4.3 Verifying the (1 + a,¢)-property for these Data Sets

We found that all instances of our data sets do not lie in the restricted input space
for which the BBG algorithm for large clusters is designed. The values of («,€)
for which the weak (1 + a, €)-property for the general case (Definition 3) holds
are such that the exact guarantee proved by Balcan et al., which is (25+40/a)e,
is much larger than 1. However, ¢/« was itself is always less than 1, so an O(e/a)
guarantee is meaningful for smaller constants. For more discussion we refer to
the full version of this paper [16].



5 Comparison to Other Methods

We compare the quality and running time of the BBG algorithms to various
heuristics and approximation algorithms for the k-median problem. More specif-
ically, we implemented the following algorithms in MATLAB: the primal-dual al-
gorithm proposed by Jain and Vazirani [13]; the primal-dual algorithm proposed
by Jain, Mahdian, Markakis, Saberi and Vazirani [12]; Lloyd’s algorithm [14];
k-means++ by Arthur and Vassilvitskii [1]; two variants of Local Search [2].

Due to space constraints, we refer the reader to the full version of this paper
[16] for an overview of the outcome of the experiments. Although we found in
the previous section that the theoretical guarantees of the BBGgeneral algo-
rithm are meaningless for our data sets, it is clear from our experiments that the
algorithm does give reasonable clusterings, and it is fast, even when checking all
threshold graphs. However, for our data sets, other algorithms clearly outper-
form the BBGgeneral algorithm. In terms of overall performance, Local Search,
which chooses random improving moves, is superior, both in terms of k-median
objective and closeness to the target clustering. The algorithm of Jain et al. [12]
is second in terms of performance, followed by kmeans—++-.

6 Conclusion and Open Problems

In this paper, we investigate theoretical and practical aspects of a new approach
to clustering proposed by Balcan et al. [4]. We show that the assumption needed
for their strongest result (the “large” clusters case) defines a set of “easy” in-
stances: instances for which we can approximate the k-median objective to within
a smaller ratio than for general instances. Our practical evaluations show that
our instances do not fall into this category. For the algorithm for the general
case, we give some theoretical justification that it may be hard to find the values
of parameters a, € that are needed as input. We show how to adapt the algorithm
so we do not need to know these parameters, but this approach does not come
with any guarantees on the misclassification. In our experimental comparison,
the performance is reasonable but some existing methods are significantly better.
An interesting direction to evaluate the pratical performance of the algo-
rithms by Balcan et al. [4] would be to test them on “easy” instances, i.e. in-
stances for which the (1 + «a,)-property holds for values ¢, « for which ¢/« is
small, perhaps by identifying a small set of points whose removal ensures that
this is the case, which was studied by Balcan, Réglin and Teng [7].
Theoretically, our results also raise the question whether it is possible to
show an approximation guarantee for the algorithms for instances that satisfy
the (1 + a, e)-property and for which the target clustering has “large” clusters
that were proposed for other objective functions, namely k-means and min-sum
k-clustering, by Balcan et al. [4] and Balcan and Braverman [6]. For the general
case, more research into exploiting this property may lead to algorithms which
outperform existing methods. On the other hand, it would be interesting to
have a lower bound on the misclassification of any (reasonable) algorithm when



given an a,¢, such that the (1 + «,é&)-property holds. In particular, it would
be interesting to know if the dependence on €/« in either the guarantee on the
misclassification or in the minimum cluster size is unavoidable.

Finally, an interesting direction is to find (other) classes of inputs defined by

natural properties for which one can give algorithms that perform better than
what is possible for the general class of inputs, both for the k-median problem
and other optimization problems.
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