
A Proof of the Boyd-Carr Conjecture

Frans Schalekamp David P. Williamson∗ Anke van Zuylen†

Abstract

Determining the precise integrality gap for the sub-
tour LP relaxation of the traveling salesman prob-
lem is a significant open question, with little progress
made in thirty years in the general case of symmetric
costs that obey triangle inequality. Boyd and Carr [3]
observe that we do not even know the worst-case up-
per bound on the ratio of the optimal 2-matching to
the subtour LP; they conjecture the ratio is at most
10/9.

In this paper, we prove the Boyd-Carr conjecture.
In the case that a fractional 2-matching has no
cut edge, we can further prove that an optimal 2-
matching is at most 10/9 times the cost of the
fractional 2-matching.

1 Introduction

The traveling salesman problem (TSP) is the most
famous problem in discrete optimization. Given a set
of n cities and the costs c(i, j) of traveling from city i
to city j for all i, j, the goal of the problem is to find
the least expensive tour that visits each city exactly
once and returns to its starting point. An instance
of the TSP is called symmetric if c(i, j) = c(j, i) for
all i, j; it is asymmetric otherwise. Costs obey the
triangle inequality if c(i, j) ≤ c(i, k) + c(k, j) for all
i, j, k. The TSP is known to be NP-hard, even in
the case that instances are symmetric and obey the
triangle inequality. From now on we consider only
these instances unless otherwise stated.

Because of the NP-hardness of the traveling
salesman problem, researchers have considered ap-
proximation algorithms for the problem. The best
approximation algorithm currently known is a 3

2 -
approximation algorithm given by Christofides in
1976 [7]. Better approximation algorithms are known
for special cases. Exciting progress has been made re-

∗Address: School of Operations Research and Information

Engineering, Cornell University, Ithaca, NY 14853, USA.

Email: dpw@cs.cornell.edu. This work was carried out while
the author was on sabbatical at TU Berlin. Supported in

part by the Berlin Mathematical School, the Alexander von
Humboldt Foundation, and NSF grant CCF-1115256.
†Address: Max-Planck-Institut für Informatik, Department

1: Algorithms and Complexity, Campus E1 4, Room 311c,

66123 Saarbrücken, Germany. Email: anke@mpi-inf.mpg.de.

cently in the case of graph-TSP, in which costs c(i, j)
are given by shortest path distances in an unweighted
graph; we will discuss these results shortly. However,
to date, Christofides’ algorithm has the best known
performance guarantee for the general case.

There is a well-known, natural direction for mak-
ing progress which has also defied improvement for
nearly thirty years. The following linear program-
ming relaxation of the traveling salesman problem
was used by Dantzig, Fulkerson, and Johnson [8] in
1954. For simplicity of notation, we let G = (V,E) be
a complete undirected graph on n nodes. In the LP
relaxation, we have a variable x(e) for all e = (i, j)
that denotes whether we travel directly between cities
i and j on our tour. Let c(e) = c(i, j), and let δ(S)
denote the set of all edges with exactly one endpoint
in S ⊆ V . Then the relaxation is

Min
∑
e∈E

c(e)x(e)

subject to:∑
e∈δ(i)

x(e) = 2, ∀i ∈ V, (SUBT)(1.1)

∑
e∈δ(S)

x(e) ≥ 2, ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 3,(1.2)

0 ≤ x(e) ≤ 1, ∀e ∈ E.(1.3)

The first set of constraints (1.1) are called the degree
constraints. The second set of constraints (1.2)
are sometimes called subtour elimination constraints
or sometimes just subtour constraints, since they
prevent solutions in which there is a subtour of just
the nodes in S. As a result, the linear program is
sometimes called the subtour LP. It is known that
the equality sign in the first set of constraints may
be replaced by ≥ in case the costs obey the triangle
inequality (Goemans and Bertsimas [12]; see also
Williamson [21]).

The LP is known to give excellent lower bounds
on TSP instances in practice, coming within a percent
or two of the length of the optimal tour (see, for
instance, Johnson and McGeoch [13]). However, its
theoretical worst-case is not well understood. In
1980, Wolsey [22] showed that Christofides’ algorithm
produces a solution whose value is at most 3

2 times

1477 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

the value of the subtour LP (also shown later by
Shmoys and Williamson [20]). This proves that the
integrality gap of the subtour LP is at most 3

2 ; the
integrality gap is the worst-case ratio, taken over all
instances of the problem, of the value of the optimal
tour to the value of the subtour LP, or the ratio of
the optimal integer solution to the optimal fractional
solution. The integrality gap of the LP is known to be
at least 4

3 via a specific class of instances. However,
no instance is known that has integrality gap worse
than this, and it has been conjectured for some time
that the integrality gap is at most 4

3 (see, for instance,
Goemans [11]).

Stronger bounds on the integrality gap are known
in the case of graph-TSP. Oveis Gharan, Saberi, and
Singh [17] show that graph-TSP can be approximated
to within 3

2 − ε for a small constant ε > 0, and this
implies a bound on the integrality gap of 3

2 − ε for
such instances as well. Mömke and Svensson [14]
show that the integrality gap is at most 1.461. Mucha
[15] improved this result to 35

24 . If the graph is cubic,
Boyd, Sitters, van der Ster, and Stougie [6] show that
the gap is 4

3 , and Mömke and Svensson extend the
bound of 4

3 to subcubic graphs as well.
There is some evidence that the conjectured gap

of 4
3 might be true. Benoit and Boyd [2] have shown

via computational methods that the conjecture holds
for n ≤ 10, and Boyd and Elliot-Magwood [5] have ex-
tended this to n ≤ 12. In a 1995 paper, Goemans [11]
showed that adding any class of valid inequalities
known at the time to the subtour LP could increase
the value of the LP by at most 4

3 ; this is necessary for
the conjecture to be true. Somewhat weaker evidence
is as follows. A 2-matching is an integer solution to
the subtour LP obeying only the degree constraints
(1.1) and the bounds constraints (1.3).1 A fractional
2-matching is a 2-matching without the integrality
constraints. Boyd and Carr [4] have shown that the
integrality gap for the 2-matching problem is at most
4
3 . Furthermore, Boyd and Carr [3] have shown that
if the subtour LP solution is half-integral (that is,
x(i, j) ∈ {0, 12 , 1} for all i, j ∈ V) and has a partic-
ular structure then there is a tour of cost at most 4

3
times the value of the subtour LP.

Not only do we not know the integrality gap of
the subtour LP, Boyd and Carr have observed that we
don’t even know the worst-case ratio of the optimal
2-matching to the value of the subtour LP, which is
surprising because 2-matchings are well understood
and well characterized. They make the following
conjecture.

1We note that what we refer to here as 2-matchings, are
also sometimes called 2-factors.

Conjecture 1. (Boyd and Carr [3]) The
worst-case ratio of an optimal 2-matching to an
optimal solution to the subtour LP is at most 10

9 .

It is known that there are cases for which the cost
of an optimal 2-matching is at least 10

9 times the
optimal solution to the subtour LP; see Figure 1.
Boyd and Carr have shown that the conjecture is true
if the solution to the subtour LP has a very special
structure: namely, all variables x(e) ∈ {0, 12 , 1}, the
cycles formed by the edges e with x(e) = 1

2 all have
the same odd size k, and the support is (k− 1)-edge-
connected.2 In the general case, the only bound on
this ratio that we know of is the Boyd and Carr
bound on the integrality gap of 2-matchings; since
the constraints of the subtour LP are a superset of
the fractional 2-matching constraints, this implies the
ratio is at most 4

3 .
The work of Goemans [11] has some bearing

on this conjecture. He studies the following linear
program which is essentially same as the subtour LP
in the case edge costs obey triangle inequality:

Min
∑
e∈E

c(e)x(e)

subject to:∑
e∈δ(S)

x(e) ≥ 2, ∀S ⊂ V, S 6= ∅, (SUBT ′)(1.4)

x(e) ≥ 0, ∀e ∈ E.(1.5)

Goemans shows (among other things) that adding
comb inequalities to this LP can increase the LP value
by at most 10

9 ; more precisely, he shows that if x is
a feasible solution to (SUBT ′), then 10

9 x is feasible
for the LP obtained by adding comb inequalities to
(SUBT ′). It is known that adding a subset of the
comb inequalities to the degree constraints (1.1) and
bounds (1.3) gives the 2-matching polytope. This
would imply the Boyd-Carr conjecture if it were
known that there is an optimal solution that obeys
the degree constraints when the comb inequalities are
added to (SUBT ′); as mentioned above, it can be
shown that there is an optimal solution for (SUBT ′)
that obeys the degree constraints when the edge costs
obey the triangle inequality. But we do not know
whether there is an optimal solution that obeys the
degree constraints if the comb inequalities are added.3

2In fact, they show in this case the optimal 2-matching has
cost at most 3k+1

3k
times the subtour LP.

3To quote Goemans [11, p. 348]: “One might wonder

whether the worst-case improvements remain unchanged when
one adds the degree constraints x(δ{i}) = 2 for all i ∈ V and

restricts one’s attention to cost functions satisfying the triangle
inequality. We believe so but have been unable to prove it.

1478 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 1: Illustration of the worst example known for the ratio of 2-matchings to the subtour LP. The figure
on the left shows the instance; all edges in the graph have cost 1, all other edges have cost 2. The figure in
the center gives the subtour LP solution, in which the dotted edges have value 1

2 , and the solid edges have
value 1; this is also an optimal fractional 2-matching. The figure on the right gives an optimal 2-matching,
which is also the optimal tour.

The contribution of this paper is to improve our
state of knowledge for the subtour LP by proving
Conjecture 1.

We start by showing that in some cases the cost
of an optimal 2-matching is at most 10

9 the cost of a
fractional 2-matching, which is a stronger statement
than Conjecture 1; in particular, we show this is true
whenever the support of the fractional 2-matching
has no cut edge. The example in Figure 1 shows that
the ratio can be at least 10

9 in such cases, so this
result is tight. As the first step in this proof, we give
a simplification of the Boyd and Carr result bounding
the integrality gap for 2-matchings by 4

3 . In the case
that the support of an optimal fractional 2-matching
has no cut edge, the proof becomes quite simple.
The perfect matching polytope plays a crucial role
in the proof: we use the matching edges to show us
which edges to remove from the solution in addition
to showing us which edges to add. We note that this
idea was independently developed in the recent work
of Mömke and Svensson, but also previously appeared
in the reduction of the 2-matching polytope to the
matching polytope; see, for instance, Schrijver [19,
Section 30.7]. We also use a notion from Boyd and
Carr [4] of a graphical 2-matching: in a graphical 2-
matching, each node has degree either 2 or 4, each
edge has 0, 1, or 2 copies, and each component has
size at least three. Given the triangle inequality,
we can shortcut any graphical 2-matching to a 2-
matching of no greater cost.

To obtain our proof of the Boyd-Carr conjecture,
we give a polyhedral formulation of the graphical 2-
matching problem, and use it to prove Conjecture 1.
If x is a feasible solution for the subtour LP, then,
roughly speaking, we show that 10

9 x is feasible for
the graphical 2-matching polytope. Our previous

The result would follow immediately if one could prove that

the degree constraints never affect the value of the relaxation
when the cost function satisfies the triangle inequality.”

results give us intuition for the precise mapping
of variables that we need. Using the graphical 2-
matching polytope allows us to overcome the issues
with the degree constraints faced in trying to use
Goemans’ results.

All the results above can be made algorithmic
and have polynomial-time algorithms, though we do
not explicitly determine running times.

We conclude by posing a new conjecture, namely
that the worst-case integrality gap is achieved for
solutions to the subtour LP that are fractional 2-
matchings (that is, for instances such that adding the
subtour constraints to the degree constraints and the
bounds on the variables does not change the objective
function value).

In a companion paper, Qian, Schalekamp,
Williamson, and van Zuylen [18] show that the proof
of the Boyd-Carr conjecture can be used to help
bound the integrality gap of the subtour LP for
the 1,2-TSP. They show that the gap is at most
106
81 ≈ 1.3086 < 4

3 . They also give a proof that the
cost of the optimal 2-matching is at most 10

9 times
the cost of a fractional 2-matching in the case that
c(i, j) ∈ {1, 2}, which gives an alternate proof of the
Boyd-Carr conjecture in this case.

Our paper is structured as follows. We introduce
basic terms and notation in Section 2. In Section 3,
we rederive the Boyd-Carr integrality gap for 2-
matchings, and show that the gap is at most 10

9 in
the case the fractional 2-matching has no cut edge.
In Section 4, we give the polytope for graphical 2-
matchings and show how to use it to prove the Boyd-
Carr conjecture. Finally, we close with our new
conjecture in Section 5. Some proofs are omitted
from this abstract; a full version of the paper can be
found at http://arxiv.org/abs/1107.1628.

1479 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

2 Preliminaries

We will work extensively with fractional 2-matchings;
that is, optimal solutions x to the LP (SUBT) with
only constraints (1.1) and (1.3). For convenience we
will abbreviate “fractional 2-matching” by F2M and
“2-matching” by 2M. F2Ms have the following well-
known structure (attributed to Balinski [1]). Each
connected component of the support graph (that is,
the edges e for which x(e) > 0) is either a cycle on at
least three nodes with x(e) = 1 for all edges e in the
cycle, or consists of odd-sized cycles with x(e) = 1

2
for all edges e in the cycle connected by paths of
edges e with x(e) = 1 for each edge e in the path
(the center figure in Figure 1 is an example). We
call the former components integer components and
the latter fractional components. Many of our results
focus on transforming an F2M into a 2M, in which
all components are integer. For that reason, we will
often focus solely on how to transform the fractional
components into integer components. We then call
the edges of fractional components for which x(e) = 1

2
cycle edges and the edges for which x(e) = 1 path
edges. Note that removing a cycle edge can never
disconnect a fractional component. If removing a
path edge disconnects a fractional component, we call
it a cut edge. The associated path of the path edge
we will call a cut path, since every edge in it will be
a cut edge. We will say that a fractional 2-matching
is connected if it has a single component.

We will use a concept introduced by Boyd and
Carr [4] of a graphical 2-matching (G2M). As stated
above, in a graphical 2-matching, each node has
degree either 2 or 4, each edge has 0, 1, or 2 copies,
and each component has size at least three. Given the
triangle inequality, we can shortcut any G2M to a 2M
of no greater cost. Our techniques for transforming
an F2M to a 2M actually find G2Ms.

We will often need to find minimum-cost perfect
matchings. By a result of Edmonds [9], the perfect
matching polytope is defined by the following linear
program (M):

Min
∑
e∈E

c(e)x(e)

subject to:∑
e∈δ(i)

x(e) = 1, ∀i ∈ V, (M)(2.6)

∑
e∈δ(S)

x(e) ≥ 1, ∀S ⊂ V, |S| odd,(2.7)

x(e) ≥ 0, ∀e ∈ E.(2.8)

3 2-matching Integrality Gaps

In this section, we bound the cost of a G2M in terms
of an F2M via combinatorial methods. We start by
giving a proof of a result of Boyd and Carr [4] that
there is a G2M of cost at most 4

3 the cost of an
F2M. Our proof is somewhat simpler than theirs, but
more importantly, it introduces the main ideas that
we will need to obtain other results. We then show
that if the F2M has no cut edges, we can improve
the bound from 4

3 to 10
9 . The main idea of this

section is that given an F2M, we define a matching
problem and compute a perfect matching. The
perfect matching tells us how to modify the fractional
components by either duplicating or removing edges
so that we obtain a G2M. We then relate the cost of
the perfect matching found to the F2M by providing
a feasible solution to the perfect matching LP (M).
We will need the following result of Naddef and
Pulleyblank [16] .

Lemma 3.1. (Naddef and Pulleyblank [16])
Let G be a cubic, 2-edge-connected graph with edge
costs c(e) for all e ∈ E. Then there exists a perfect
matching in G of cost at most 1

3

∑
e∈E c(e).

We note that Lemma 3.1 also holds for cubic,
2-edge-connected multigraphs.

Theorem 3.1. There exists a G2M of cost at most
4
3 times the cost of an F2M if the F2M has no cut
edge.

Proof. As described above, it is sufficient to focus on
a single fractional component of the F2M. Let G be
the support graph of this component.

To find the G2M, we find a minimum-cost per-
fect matching on the (multi)graph G′ we obtain by
replacing each path in G by a single edge, which we
will call (at the risk of some confusion) a path edge.
We set the cost of this edge to be the cost of the path
in G, and we set the cost of a cycle edge in G′ to the
negative of the cost of the cycle edge in G. Note that
G′ is cubic and 2-edge-connected because the support
graph G of the F2M has no cut edge.

Given a minimum-cost perfect matching in G′,
we construct a G2M in G by first including all paths
from G. If a path edge is in the matching in G′, we
double the path in G. If a cycle edge is not in the
matching in G′, then we include the cycle edge in the
G2M in G, otherwise we omit the cycle edge.

We first show that this indeed defines a G2M: for
each node, the degree is four if the perfect matching
contains the path edge incident to the node (since in
that case, the two cycle edges on the node cannot be
in the perfect matching, and hence both are added

1480 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

to the G2M together with two copies of the path),
and it is two otherwise (since one cycle edge is in the
perfect matching and hence only the other cycle edge
and one copy of the path are added to the graphical
2-matching). Note that any connected component
indeed has at least three nodes: Every connected
component contains (the edges corresponding to)
at least one path edge; now, either a path edge
corresponds to a path of length at least 2, or the path
edge corresponds to a single edge, but then at least
two cycle edges incident to the endpoints of the path
edge are also contained in the connected component,
and these cycle edges are distinct from the edge that
is the path, since G has no doubled edges.

We let C denote the sum of the costs of the cycle
edges, and P the cost of the paths. Note that the
cost of the F2M solution is 1

2C + P . The cost of the
G2M is equal to the cost of all edges in the support
graph (P +C) plus the cost of the perfect matching.
Because G′ is cubic and 2-edge-connected, we can
invoke Lemma 3.1 to show that the perfect matching
has cost at most a third the cost of the edges in G′,
or at most 1

3P −
1
3C. Hence the cost of the G2M is

at most

P + C +
1

3
P − 1

3
C =

4

3
P +

2

3
C =

4

3

(
P +

1

2
C

)
,

or at most 4
3 the cost of the F2M solution, as claimed.

We now modify the proof of the theorem above
so that the result extends to the case in which the
F2M has cut edges.

Theorem 3.2. (Boyd and Carr [4]) There exists
a G2M of cost at most 4

3 times the cost of an F2M.

Proof. As described above, it is sufficient to focus on
a single fractional component of the F2M, and we let
G be the support graph of this component.

We once again create a new graph G′ from G,
so that we can later define a matching problem in
G′. The matching will again show us how to create
a G2M in G. We extend the previous construction
to deal with the case when the support graph has
cut paths. We introduce a gadget in G′ for each cut
path in G, which replaces the cut path and its two
endpoints. The other paths in G are again replaced
by single edges in G′ of cost equal to the cost of the
path. Each cycle edge in G is also in G′ with cost
equal to the negative of its cost in G.

To introduce the cut-path gadget, we begin by
using an idea of Boyd and Carr [4]; namely, that we
only need to consider three patterns to get an almost
feasible graphical 2-matching on the cut path, when

pattern 1

pattern 2

pattern 3

Figure 2: Illustrations of patterns for ` = 9.

we allow ourselves to increase the cost by a third
compared to the F2M. Suppose the cut path has `
edges and ` + 1 nodes, and let k = b`/3c. We can
remove every third edge, double the remaining edges
to obtain groups of nodes that are 2-edge-connected,
where we get k groups of three nodes that are G2M
components, plus one group of ` − 3k ∈ {0, 1, 2}
nodes. Alternatively, we could remove every third
edge, starting from the first edge and double the
remaining edges, in which case the first group has one
node, the next k or k−1 groups have three nodes and
the last group again has one or two nodes. The final
pattern removes every third edge, starting from the
second edge, so that the first group has two nodes,
the next k or k − 1 groups have three nodes, and,
again, the last group has one or two nodes. Figure 2
illustrates the three patterns for ` = 9.

To get a G2M that contains a certain pattern, we
will ensure that if a group has size less than three, the
G2M will include the two cycle edges incident to the
first node (if the group is at the start of the pattern)
or last node (if the group is at the end of the pattern).

We remark that for ` ≥ 2 there is exactly one
pattern that starts with a group of size one, two
and three, and hence two patterns need the G2M
to include two cycle edges incident to the first node
of the cut path. On the other hand, there is also
exactly one pattern that ends with a group of size one,
two and three (the length of the cut path determines
which of the three patterns ends with a group of size
three: it is the second pattern if ` (mod 3) = 0, the
third pattern if ` (mod 3) = 1 and the first pattern if
` (mod 3) = 2), and hence there are also two patterns
that need the G2M to include the two cycle edges
incident to the last node of the cut path. If ` = 1,
there is one pattern that starts and ends with a group
of size one, the other two patterns both start and end
with a group of size two.

We are now ready to define the cut-path gadget.
We replace each endpoint of the cut path in G by a
path of length two in G′; each of these new edges
will have cost 0. Each node on the path will be
connected to a pattern edge corresponding to one of
the three patterns. If ` ≥ 2, the middle node is
connected to the pattern edge corresponding to the

1481 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

pattern 3

pattern 1

pattern 2

Figure 3: Pattern gadget for ` = 9.

pattern which does not need two cycle edges incident
to the endpoint of the cut path (i.e. the pattern for
which the group containing the endpoint has size
three). We set the cost of a pattern edge to the
cost of the edges in the corresponding pattern. See
Figure 3 for an illustration of the gadget when ` = 9.
If ` = 1, the patterns associated with the illustration
in Figure 3 are chosen so that pattern 3 corresponds
to not adding the edge of the cut path, and patterns
1 and 2 correspond to doubling the edge.

If we replace each cut path in G by a cut-path
gadget in G′, once again G′ will be a cubic graph. It
is not hard to check that G′ is also 2-edge-connected
because we have replaced the cut path in G with three
pattern edges crossing the cut in G′.

We argue that there is a minimum-cost perfect
matching that uses exactly one edge from each cut-
path gadget. Note that the fact that we replace only
the cut paths in G by a cut gadget in G′ means that
a perfect matching in G′ contains an odd number of
pattern edges in a gadget. If it contains three pattern
edges, then we could find a matching of no greater
cost by choosing only one pattern edge, namely the
pattern edge that is not incident to the middle node
for the either one of its endpoints. Note that we can
add two edges of cost 0 that connect the four nodes
incident to the other two pattern edges, to again have
a perfect matching without increasing the cost.

Now we show how to obtain a G2M in G from the
minimum-cost perfect matching in G′. In the G2M
we include all edges from G that are in paths which
are not cut paths, the cycle edges in G which are not
chosen by the perfect matching, duplicates of edges in
paths in G that are chosen by the perfect matching,
and the edges in a pattern if the corresponding
pattern edge is in the perfect matching.

We argue that this set of edges is a G2M in
G. Note that if the perfect matching contains only
the pattern edge incident to the middle node, then
the two cycle edges that are adjacent to the gadget
are also in the matching. Hence the corresponding
endpoint in G of the cut path has no cycle edges
incident to it in the G2M, but since the pattern edge
is incident to the middle node, the corresponding
pattern ensures that the node has degree two and is

in a connected component of size three. If the perfect
matching contains the pattern edge incident to a node
other than the middle node, then neither of the two
cycle edges that are adjacent to the gadget in G′ are
in the perfect matching. Hence the corresponding
endpoint of the cut path in G has both of these cycle
edges incident to it in the G2M, and zero or two edges
from the pattern corresponding to the chosen pattern
edge. Hence the node has degree two or four and it
is in a connected component of size at least three.

As before, because G′ is cubic and 2-edge-
connected, we can apply Lemma 3.1 to bound the
cost of the perfect matching in G′. Let P1 be the
cost of the paths in G that are not cut paths, and
P2 the cost of the cut paths in G, so that the cost
of the F2M is P1 + P2 + 1

2C. Note that the cost of
the three pattern edges in the gadget corresponding
to a cut path sums up to four times the cost of the
cut path. Thus the total cost of the edges in G′ is
P1 + 4P2 − C. By Lemma 3.1, the cost of the per-
fect matching in G′ is at most 1

3P1 + 4
3P2− 1

3C. The
cost of the G2M corresponding to the minimum-cost
perfect matching is therefore at most

P1+
1

3
P1+

4

3
P2+C− 1

3
C =

4

3
P+

2

3
C =

4

3

(
P +

1

2
C

)
as claimed.

We can extend the ideas above to obtain a better
G2M if no cut paths exist. The basic idea is that we
replace every path by a cut-path gadget, and show
that the solution x(e) = 1

9 if e is a pattern edge
and x(e) = 4

9 if e is a cycle edge is feasible for the
matching polytope (M).

Theorem 3.3. If an F2M has no cut edge, then
there exists a G2M of cost at most 10

9 times the cost
of the F2M.

4 A Polyhedral Proof of the Boyd-Carr
Conjecture

We will generalize the result in Theorem 3.3 and
show that the ratio between the cost of the optimal
2-matching and the subtour LP is at most 10

9 . In
the combinatorial proofs of the previous section, we

1482 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

heavily used the fact that F2Ms have a nice simple
structure, and, unfortunately, this does not hold
for the subtour LP solution. We therefore turn
to a polyhedral rather than a combinatorial proof.
We derive a polyhedral description for graphical
2-matchings, and we then use this description to
construct a feasible (fractional) G2M solution from
any solution to the subtour LP of cost not more than
10
9 times the value of the subtour LP. The manner in

which the feasible G2M solution is defined based on
a solution to (SUBT) is a generalization of the proof
of Theorem 3.3.

We start by giving a polyhedral description of
a generalization of 2-matching, where the node set
consists of “mandatory nodes” (Vman) and “optional
nodes” (Vopt). The former need to have degree 2 in
the solution, whereas the latter can have degree 0 or
2. We will refer to this problem as the 2-Matching
with Optional Nodes Problem (2MO).

Theorem 4.1. Let G = (Vman ∪ Vopt, E) be a 2MO
instance. The convex hull of integer 2MO solutions
is given by the following polytope:∑

e∈δ(i)

y(e) = 2, ∀i ∈ Vman,(4.9)

∑
e∈δ(i)

y(e) ≤ 2, ∀i ∈ Vopt,(4.10)

∑
e∈δ(S)\F

y(e) +
∑
e∈F

(1− y(e)) ≥ 1, ∀S ⊆ V,(4.11)

F ⊆ δ(S), F matching, |F | odd,
0 ≤ y(e) ≤ 1, ∀e ∈ E.(4.12)

The proof of Theorem 4.1 is similar to the proof of
the polyhedral description of the 2-matching polytope
(Theorem 30.8) in Schrijver [19].

Recall the definition of a graphical 2-matching
(G2M): (i) each node has degree either 2 or 4, (ii) each
edge has 0, 1, or 2 copies, and (iii) each component
has size at least three. We will (for the moment) relax
the second condition so that each edge has at most 3
copies.

Lemma 4.1. We can reduce a G2M instance G =
(V,E) to a 2MO instance G′ = (V ′, E′) as follows:
Let V ′man = {im : i ∈ V }, V ′opt = {io : i ∈ V }, V ′ =
V ′man ∪ V ′opt, E′ = {(im, jm) : (i, j) ∈ E} ∪ {(im, jo) :
(i, j) ∈ E}. We add an edge {i, j} to the (relaxed)
G2M solution for each edge (im, jm), (io, jm) and
(im, jo) that is in the associated 2MO solution.

If the edges have nonnegative costs, we may
assume without loss of generality that each edge
appears at most twice in an optimal G2M solution:

if any edge appears three times, we can remove
two copies of it without affecting the parity of its
endpoints, and the cost cannot increase.

The following lemma shows how to map a solu-
tion x of the subtour LP to a solution y to the 2MO
polytope corresponding to a G2M. The mapping is
based on some insights gleaned from the proof of
Theorem 3.3; we omit this discussion due to space
constraints.

Lemma 4.2. Given a graph G = (V,E), let x be
a feasible solution to the subtour LP for G. Then
the following solution is a feasible solution to the
2MO instance G′ = (V ′, E′) associated with the
graphical 2-matching instance given by G for α =
1
9 : y(im, jm) = (1 − α)x(i, j), y(im, jo) = αx(i, j),
y(io, jm) = αx(i, j) for all (i, j) ∈ E.

Note that the cost of the constructed G2M so-
lution is exactly 10

9 times the cost of the solution of
the subtour LP. Thus our result follows immediately
from the lemma.

Corollary 4.1. There exists a G2M of cost at most
10
9 times the value of the subtour LP.

Proof of Lemma 4.2: We need to show that y
satisfies the constraints (4.9)-(4.12) on G′, where G′

is defined as in Lemma 4.1. Constraints (4.9), (4.10)
and (4.12) are obviously met, and we only need to
show that constraints (4.11) are met. To this end, fix
S ⊆ V ′, F ⊆ δ(S) where F is a matching and |F |
is odd. We define z(e′) = y(e′) if e′ ∈ δ(S)\F and
z(e′) = 1 − y(e′) if e′ ∈ F . For simplicity, for any
set of edges X ⊆ E′, we define z(X) =

∑
e′∈X z(e

′).
Then we need to show that z(δ(S)) ≥ 1.

First, suppose S does not contain any node im
for any i ∈ V . For any jo ∈ S, we have that
z(δ(S)∩δ(jo)) = z({(im, jo) : i ∈ V }). Since |F | ≥ 1,
there exists some jo ∈ S such that F contains some
edge incident to jo, say (i′m, jo). Then, z({(im, jo) :
i ∈ V }) = 1 − αx(i′, j) +

∑
i∈V :i6=i′ αx(i, j) =

αx(δ(j)) + 1− 2αx(i′, j). Now, note that x(δ(j)) = 2
and x(i′, j) ≤ 1, hence z(δ(S) ∩ δ(jo)) ≥ 1.

By symmetry, it remains to consider the case
when both S and V ′\S contain a node im for some
i ∈ V .

We consider an edge e = (i, j) ∈ G such that at
least one of the three edges (io, jm), (jm, im), (im, jo)
crosses the cut S in G′. Note that there are 23−1 = 7
possible choices for the edges that cross the cut. We
discern five different types of edges in G for which at
least one of the three corresponding edges crosses the
cut (type II and type V each cover 2 of the possible
choices):

1483 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

(I) The edge (im, jm) crosses the cut.
(II) The edges (io, jm) and (jm, im) or the edges

(jm, im) and (im, jo) cross the cut.
(III) The edges (io, jm), (jm, im) and (im, jo) cross the

cut.
(IV) The edges (io, jm), (im, jo) cross the cut.
(V) The edge (io, jm) or the edge (im, jo) crosses the

cut.

Figure 4 illustrates the five types.
We use the notation i∗ to denote either im or io,

and we will say an edge e′ = (i∗, j∗) ∈ G′ is in a
gadget of type I, II, . . . , V, if the edge (i, j) ∈ G is
an edge of that type.

We now consider three different cases, depending
on the set F .

Claim 4.1. If F contains an edge in a gadget of type
IV or V, then z(δ(S)) ≥ 1.

For the remaining cases, we associate a cut R in
the graph G with the cut S in G′: let R = {i ∈ V :
im ∈ S}. Note that R, V \R are not empty. Note
that if e is of type I, II, or III, then the edge (im, jm)
crosses the cut, and hence, the edge e crosses the cut
R in G.

In the remainder of this proof, we will write
z(δ(S)) = y(δ(S)) + |F | − 2y(F), and we will give
a lower bound on y(δ(S)) to show that z(δ(S)) ≥ 1.
In order to give a lower bound on y(δ(S)), we need
to use the fact that x satisfies degree constraints for
each node, and that x(δ(R)) ≥ 2. It will therefore
be convenient to relate the contribution to y(δ(S)) of
the three edges (io, jm), (jm, im), and (im, jo) to the
edge (i, j) ∈ G, if (i, j) ∈ δ(R), but also to the nodes
i and j for certain types of nodes i, j ∈ V .

In particular, we say a node i ∈ V is a lonely
node if |{im, io} ∩ S| = 1. We let L be the set
of lonely nodes. We assign each lonely node i an
amount of αx(i, j), for each edge (i, j) of type I,
II, . . . , V. Note that for each lonely node i, the paths
{(io, jm), (jm, im)} cross the cut for all j ∈ V , and
hence, each lonely node gets assigned α

∑
j x(i, j),

which by the degree constraints is equal to 2α.

(I) For an edge (i, j) of type I, the total contribution
of the three edges (io, jm), (jm, im), (im, jo) to
y(δ(S)) is (1 − α)x(i, j). Note that both i and
j are lonely nodes. We assign (1 − 3α)x(i, j) to
the edge (i, j), and αx(i, j) each to nodes i and
j.

(II) For an edge (i, j) of type II, the total contribu-
tion of the three edges (io, jm), (jm, im), (im, jo)
to y(δ(S)) is x(i, j). Note that only one of i, j is a
lonely node, and we therefore assign (1−α)x(i, j)

to the edge (i, j), and αx(i, j) to the lonely node
among i, j.

(III) For an edge (i, j) of type III, the total contribu-
tion of the three edges (io, jm), (jm, im), (im, jo)
to y(δ(S)) is (1 +α)x(i, j), and neither i nor j is
a lonely node. We therefore assign (1 +α)x(i, j)
to the edge (i, j).

(IV) For an edge (i, j) of type IV, the total contribu-
tion of the three edges (io, jm), (jm, im), (im, jo)
to y(δ(S)) is 2αx(i, j). Since (i, j) 6∈ δ(R) and
both i and j are lonely nodes, we assign 0 to
(i, j) and αx(i, j) each to i and j.

(V) For an edge (i, j) of type V, the total contribu-
tion of the three edges (io, jm), (jm, im), (im, jo)
to y(δ(S)) is αx(i, j). Since (i, j) 6∈ δ(R) and
only one of i and j is a lonely node, we can as-
sign 0 to (i, j) and αx(i, j) to the lonely node.

By the argument above, we have assigned 2α
to each lonely node. We now show how this fact,
combined with the fact that x(δ(R)) ≥ 2 and the
assignment of values to the edges in δ(R), allows us
to conclude that z(δ(S)) ≥ 1.

Claim 4.2. If |F | = 1, then z(δ(S)) ≥ 1.

Claim 4.3. If |F | ≥ 3, then z(δ(S)) ≥ 1.

Proof. By Claim 4.1, we may assume that all edges
in F are contained in a gadget of type I, II or III, and
hence, that the corresponding edges in e ∈ G are in
δ(R). Let E1, E2, E3 be the edges in δ(R) of type I,
II and III, respectively, for which the gadget contains
one or more edges in F .

Note that a lonely node i can be incident to
at most one edge in E1 ∪ E2 ∪ E3: Only the edges
(i, j) ∈ E1 ∪ E2 can be incident to a lonely node i,
and in the first case, (im, jm) must be in F , and in
the second case, either (im, jo) or (im, jm) is in F ,
since these are the only edges that cross the cut for
these types. Now, since F is a matching, it can have
at most one edge incident to im and hence i can be
incident to at most one edge in E1 ∪ E2 ∪ E3.

We therefore have that

y(δ(S)) ≥ (1− 3α)x(E1) + 4α|E1|+ (1− α)x(E2)

+2α|E2|+ (1 + α)x(E3).

On the other hand, since F is a matching, only
the gadgets for edges of type III can contain two edges
in F . Hence, |F | = |E1|+ |E2|+ (1 +β)|E3|, where β
is the fraction of edges in E3 for which two edges in
the corresponding gadget are contained in F .

Also, y(F) ≤ (1 − α) (x(E1) + x(E2) + x(E3)),
since y((i∗, j∗)) ≤ (1 − α)x(i, j), and, if two edges

1484 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

io

im

jm

jo
(a) Type I.

io

im

jm

jo
(b) Type II.

io

im

jm

jo
(c) Type III.

io

im

jm

jo
(d) Type IV.

io

im

jm

jo
(e) Type V.

Figure 4: Illustrations of the five types of cuts of the edges in the reduction. The y-value on the top and
bottom edge is αx(i, j) and the y-value on the middle edge is (1− α)x(i, j).

in the gadget for e ∈ E3 are contained in F , then
these edges both have y-value αx(e), and since α = 1

9 ,
2αx(e) ≤ (1− α)x(e).

Hence, we get that

z(δ(S)) = y(δ(S)) + |F | − 2y(F)

≥ (1 + 4α)|E1|+ (−1− α)x(E1)

+(1 + 2α)|E2|+ (−1 + α)x(E2)

+|E3|+ (−1 + 3α)x(E3) + β|E3|
≥ 3α(|E1|+ |E2|+ |E3|) + β|E3| ≥ 3α|F |,

where the penultimate inequality follows from the
fact that x(Ek) ≤ |Ek| and α = 1

9 , and the
last inequality from the fact that α = 1

9 . Hence,
z(δ(S)) ≥ 1.

By the three claims we have for any S ⊆ V ′, F ⊆
δ(S), where F is a matching of odd size, that∑
e′∈δ(S)\F y(e′) +

∑
e′∈F (1 − y(e′)) = z(δ(S)) ≥ 1,

and hence y is a feasible solution to the 2MO instance
G′.

5 Conjectures and Conclusions

I conjecture that there is no [polynomial-
time] algorithm for the traveling salesman
problem. My reasons are the same as for
any mathematical conjecture: (1) It is a
legitimate mathematical possibility, and (2)
I do not know.

— Edmonds [10]

We conclude our paper with a conjecture. We do
so in the spirit of Jack Edmonds, quoted above; we
do not know whether the conjecture is true or not,

but we think that even a proof that this conjecture
is false would be interesting. Our conjecture says
that the integrality gap (or worst-case ratio) of the
subtour LP is obtained for specific kinds of vertices
of the subtour polytope; namely, ones in which the
subtour LP solution has no subtour constraint as part
of the dual basis, or, restated a different way, for costs
c such that an optimal subtour LP solution for c is
the same as an optimal fractional 2-matching for c.
Let us call such costs c fractional 2-matching costs
for the subtour LP. Note that for such solutions of
the subtour LP, the fractional 2-matching will have
no cut edge.

Conjecture 2. The integrality gap for the subtour
LP is attained for a fractional 2-matching cost for the
subtour LP.

We could make a similar conjecture for the ratio of
the cost of the optimal 2-matching to the subtour LP,
but by Corollary 4.1 and the example in Figure 1, we
already know that the conjecture is true. However,
its truth does not shed any light on the conjecture
above.

In a companion paper, Qian et al. [18] show that
if an analogous conjecture for edge costs c(i, j) ∈
{1, 2} is true, then the integrality gap for 1,2-TSP is
at most 7

6 . They conjecture that the integrality gap
for the 1,2-TSP is at most 10

9 ; it is known that it can
be no smaller than 10

9 . It would be nice to show that
if the analogous conjecture is true then the integrality
gap for 1,2-TSP is at most 10

9 .
Interestingly, we appear to know almost nothing

about the consequences of Conjecture 2. Even for
this very restricted set of cost functions, we do not
know a better upper bound on the integrality gap

1485 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

of the subtour LP other than the bound of 3
2 . Note

that the lower bound of 4
3 is attained for a fractional

2-matching cost. It would be very interesting to
prove that for such costs the integrality gap is indeed
4
3 . Boyd and Carr [3] have shown this for some
fractional 2-matching costs in which all the cycles
of the fractional 2-matching have size 3; this result
also follows from the technique of Theorem 3.1, since
the resulting graphical 2-matching is Eulerian if all
cycles have size 3 and the fractional 2-matching has
a single component (the graphical 2-matching may
not be connected if there are cycles of size 5).

Acknowledgements We thank Sylvia Boyd for use-
ful and encouraging discussions; we also thank her for
giving us pointers on her various results. Gyula Pap
made some useful suggestions regarding the polyhe-
dral formulation of graphical 2-matchings.

References

[1] M. L. Balinski. Integer programming: Methods,
uses, computation. Management Science, 12:253–
313, 1965.

[2] G. Benoit and S. Boyd. Finding the exact integrality
gap for small traveling salesman problems. Mathe-
matics of Operations Research, 33:921–931, 2008.

[3] S. Boyd and R. Carr. Finding low cost
TSP and 2-matching solutions using certain half-
integer subtour vertices. To appear in Dis-
crete Optimization. See http://dx.doi.org/10.

1016/j.disopt.2011.05.002. Prior version avail-
able at http://www.site.uottawa.ca/~sylvia/

recentpapers/halftri.pdf. Accessed June 27,
2011.

[4] S. Boyd and R. Carr. A new bound for the ratio
between the 2-matching problem and its linear pro-
gramming relaxation. Mathematical Programming,
86:499–514, 1999.

[5] S. Boyd and P. Elliott-Magwood. Structure of the
extreme points of the subtour elimination polytope
of the STSP. In S. Iwata, editor, Combinatorial Op-
timization and Discrete Algorithms, volume B23 of
RIMS Kôkyûroku Bessatsu, pages 33–47. Research
Institute for Mathematical Sciences, Kyoto Univer-
sity, Kyoto, Japan, 2010.

[6] S. Boyd, R. Sitters, S. van der Ster, and L. Stougie.
TSP on cubic and subcubic graphs. In O. Günlük
and G. J. Woeginger, editors, Integer Programming
and Combinatorial Optimization, 15th International
Conference, IPCO 2011, number 6655 in Lecture
Notes in Computer Science, pages 65–77. Springer,
Berlin, Germany, 2011.

[7] N. Christofides. Worst case analysis of a new
heuristic for the traveling salesman problem. Report
388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1976.

[8] G. Dantzig, R. Fulkerson, and S. Johnson. Solution
of a large-scale traveling-salesman problem. Opera-
tions Research, 2:393–410, 1954.

[9] J. Edmonds. Maximum matching and a polyhedron
with (0,1) vertices. J. Res. Nat. Bur. Standards
Sect. B, 69B:125–130, 1965.

[10] J. Edmonds. Optimum branchings. Journal of
Research of the National Bureau of Standards B,
71B:233–240, 1967.

[11] M. X. Goemans. Worst-case comparison of valid in-
equalities for the TSP. Mathematical Programming,
69:335–349, 1995.

[12] M. X. Goemans and D. J. Bertsimas. Survivable
networks, linear programming relaxations, and the
parsimonious property. Mathematical Programming,
60:145–166, 1990.

[13] D. S. Johnson and L. A. McGeoch. Experimental
analysis of heuristics for the STSP. In G. Gutin
and A. P. Punnen, editors, The Traveling Salesman
Problem and Its Variants, pages 369–444. Kluwer
Academic Publishers, Dordrect, The Netherlands,
2002.

[14] T. Mömke and O. Svensson. Approximating graphic
TSP by matchings. In Proceedings of the 52th
Annual Symposium on Foundations of Computer
Science, 2011. To appear.

[15] M. Mucha. Improved analysis for graphic TSP
approximation via matchings. Appears at http:

//arxiv.org/abs/1108.1130, 2011.
[16] D. Naddef and W. R. Pulleyblank. Matchings in

regular graphs. Discrete Mathematics, 34:283–291,
1981.

[17] S. Oveis Gharan, A. Saberi, and M. Singh. A ran-
domized rounding approach to the traveling sales-
man problem. In Proceedings of the 52th Annual
Symposium on Foundations of Computer Science,
2011. To appear.

[18] J. Qian, F. Schalekamp, D. P. Williamson, and
A. van Zuylen. On the integrality gap of the subtour
LP for the 1,2-TSP. Manuscript. Available at http:
//arxiv.org/abs/1107.1630, 2011.

[19] A. Schrijver. Combinatorial Optimization - Polyhe-
dra and Efficiency. Springer, 2003.

[20] D. B. Shmoys and D. P. Williamson. Analyzing the
Held-Karp TSP bound: A monotonicity property
with application. Information Processing Letters,
35:281–285, 1990.

[21] D. P. Williamson. Analysis of the Held-Karp heuris-
tic for the traveling salesman problem. Master’s the-
sis, MIT, Cambridge, MA, June 1990. Also appears
as Tech Report MIT/LCS/TR-479.

[22] L. A. Wolsey. Heuristic analysis, linear program-
ming and branch and bound. Mathematical Pro-
gramming Study, 13:121–134, 1980.

1486 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

