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Abstract

We show that winning the game New Age Solitaire only depends on the number of rising sequences in
the deck used. The probability of winning for the special case of a new deck that is shuffled using the
GSR-shuffle (and two variants) are studied. We show that this game pinpoints the Achilles heel of the
GSR-shuffle as is demonstrated using the variation distance.

1 Introduction

Since the publication of [1] by Dave Bayer and Persi Diaconis, it is a commonly held belief, that shuffling a
deck of 52 cards 7 times ensures a “sufficiently random” card order. In Peter Doyle’s game New Age Solitaire,
however, the probability of winning after 7 GSR-shuffles using a new deck is close to 80 percent, in contrast
with the theoretical probability of winning of 50 percent in a uniformly random deck. This probability is
known from simulation, see e.g. Brad Mann [3]; in this note, we show that this probability can actually be
computed without too much difficulty. We will further show that this game points out the Achilles heel of the
most commonly studied model of shuffling, the uniform riffle shuffle, also known as GSR-shuffle. The authors
think the results in the first sections of this note can be used as a textbook example for undergraduates,
because the mathematics is not hard, and it nicely illustrates the meaning of the variation distance.

The outline of this note is as follows: In section 2, we will give a description of the game. In section 3, we
will give the definitions and some results on the GSR-shuffle, which we will use in the next sections. Section
4 contains the derivation of the probability of winning New Age Solitaire after GSR-shuffles as advertised.
Section 5 demonstrates how New Age Solitaire is the Achilles heel of the GSR-shuffle. Variations of the game
are studied in section 6. The proofs that are suppressed to keep the flow of the argument, can be found in
the appendix.

∗This paper appeared in a revised form, subsequent to peer review and/or editorial input by Cambridge University Press,
in Probability in the Engineering and Informational Sciences, 18, 2004, 315-328. Copyright 2004 Cambridge University Press
0269-9648/04.
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2 New Age Solitaire

In the game New Age Solitaire, you pass through a deck of cards held face down and make two piles, Yin
and Yang. The Yin pile will consist of the suits Hearts and Clubs in the order Ace to King of Hearts followed
by Ace to King of Clubs, the Yang pile will have the Diamonds and Spades suits, in order Ace to King of
Spades followed by Ace to King of Diamonds. Cards can only be placed on the piles in this order. You
consider the cards in the order of the deck you are given. If you cannot place a card on the Yin or the Yang
pile, it is put on a third pile. You win, if the Yin pile is finished before the Yang pile. If neither of the
piles is finished after all cards in the deck have been considered, you pick up the third pile, turn it over, and
continue with these cards. Note that turning the pile of remaining cards implies that the order in which you
consider these cards is the same as the original order of the cards.

In a new deck of cards, bought in the United States, the cards when held face down are in the order Ace
to King of Hearts, Ace to King of Clubs, King to Ace of Diamonds, King to Ace of Spades. Note that the
Yang pile has a disadvantage if a new deck is used; in a new deck the cards for the Yin pile are in such order
that you can add them all in the first pass, whereas for the Yang pile only one card can be added in each
pass through the deck.

This game can obviously be played with any deck of cards, not just with a new deck. It is interesting to
study this game when a new deck is used, however, to see how an unfavorable ordering of the cards before
shuffling can still be noticed even after as many as 7 shuffles. It has been shown by simulation that the
probability of winning this exciting game is about 80 percent when using a new deck that has been riffle
shuffled 7 times.

In one variation of the game, it is assumed that an additional cut is performed after shuffling. Our main
focus in this note is on the probability of winning New Age Solitaire when using a new deck that has been
riffle shuffled, and we will make a point as to why this is the most interesting situation to be studied. We
will, however, also consider the probability of winning after 7 shuffles and an additional cut.

Another variation of this game, which can also be found on the internet, is the making of four, instead
of two piles; one for each suit. Winning the game is then defined as finishing both the Hearts and Clubs
piles, before Diamonds and Spades. We will also consider this game in section 6, where we will argue that
this version of the game also constitutes a less interesting case.

3 GSR-shuffle

For ease of notation, we will assume henceforth that the cards are numbered from 1, . . . , n. Moreover, we
will assume that the cards are in this order in a new deck, i.e. before shuffling. This implies that the Yin
pile will be made by adding the cards 1, . . . , n/2 in this order, and the Yang pile will be made by adding the
cards n, n− 1, . . . , n/2 + 1 in this order, i.e. in order which is the reverse of the numbering of the cards.

Notation We will write π = (π1 π2 · · · πn) for a permutation of length n, where πj is the number on
the card in position j. Inversely, denote by pos(i, π) the position of the card numbered i in permutation π.
(pos(i, π) = π−1

i , where π−1 is the algebraic inverse of π.) Where there is no risk of confusion, we will write
pos(i).

The most commonly studied model of shuffling is the Uniform Riffle Shuffle, also known as the GSR-
shuffle, introduced by and named after Gilbert, Shannon and Reeds [2], [4]. When performing a riffle shuffle,
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a deck is cut into two piles. The piles are taken in the left and right hand, and the cards from the two
hands are then interleaved. The characteristic features of the GSR-model are the binomial (n, p = 1/2)
distribution of the position of the cut, and the assumption that the probability that the next card comes
from the left or right hand, is proportional to the number of cards in that hand. For more details, we would
like to refer the reader to Bayer and Diaconis [1].

Bayer and Diaconis [1] showed that the probability of obtaining a certain ordering after k GSR-shuffles,
only depends on the number of rising sequences in this ordering.

Definition A rising sequence is a maximal sequence of card numbers i, i + 1, . . . , i + j, such that pos(i) <
pos(i + 1) < · · · < pos(i + j).

Note that maximal implies that pos(i−1) > pos(i) for i > 1, and pos(i+ j +1) < pos(i+ j) for i+ j < n.

We will also use the notion of descending sequence:

Definition A descending sequence is a maximal sequence of card numbers i, i − 1, . . . , i − j, such that
pos(i) < pos(i− 1) < · · · < pos(i− j).

We have the following cute relation between the number of rising sequences and the number of descending
sequences in a permutation:

Lemma Let r be the number of rising sequences, and d be the number of descending sequences in a
permutation of length n. We have the relation r + d = n + 1.

The proof is given in the appendix.

Proposition (Bayer & Diaconis [1]) The probability that s GSR-shuffles on a new deck result in a permu-
tation π, is

P (π|s GSR-shuffles) =

(
n+2s−r

n

)
2sn

(1)

where r is the number of rising sequences in π.

Even though the proof gives insight in the mechanics of the GSR-shuffle, we will omit it, because it is
not needed for this note.

To evaluate the “degree of randomness” after s shuffles, the probability distribution on the permutations
after s shuffles is compared to the uniform probability distribution on the permutations. The usual way to
compare two probability distributions is the variation distance, which is just one half times the L1-norm:

‖Q∗s − U‖ =
1
2

∑
π∈S

∣∣∣PQ∗s(π)− PU (π)
∣∣∣ =

1
2

∑
π∈S

∣∣∣PQ∗s(π)− 1
n!

∣∣∣, (2)

where Q∗s denotes the probability distribution on the permutations after s shuffles, U denotes the uniform
probability distribution, and S the set of all possible permutations of length n. Note that ‖Q∗s − U‖ =
maxΠ⊆S

∑
π∈Π(PQ∗s(π)− PU (π)), which we will use later.

By the proposition, we can express the variation distance after s GSR-shuffles as

‖Q∗s − U‖ =
1
2

n∑
r=1

An,r

∣∣∣ (n+2s−r
n

)
2sn

− 1
n!

∣∣∣ (3)
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where An,r is the number of permutations of length n, with exactly r rising sequences. It turns out that
An,r are the Euler numbers, as shown by Tanny [5].

4 Winning New Age Solitaire

The main result of this note, is the fact that winning New Age Solitaire, only depends on the number of
rising sequences in the deck. Henceforth, we will assume that the number of cards in the deck, n, is even.

Lemma Let r be the number of rising sequences in a deck of n cards. Then, you will win New Age Solitaire
using this deck, iff r ≤ n/2.

Proof Consider the deck restricted to cards 1, 2, . . . , n/2. Note that the number of rounds needed to
complete the Yin pile, equals the number of rising sequences in this restricted deck, say r1.

Similarly, the number of descending sequences in the deck restricted to cards n/2 + 1, n/2 + 2, . . . , n,
equals the number of rounds needed to complete the Yang pile, say d2.

Note that you win the game, if r1 < d2, or r1 = d2 and pos(n/2) < pos(n/2 + 1).

Denote by r2 the number of rising sequences in the deck restricted to cards n/2 + 1, n/2 + 2, . . . , n. Note
that the total number of rising sequences in the deck, is equal to r1 +r2−1{pos(n/2) < pos(n/2+1)}, where
1 is the indicator function. By the lemma in section 3, r2 = n/2 + 1− d2. Combining these two equalities,
gives

r = r1 − d2 + n/2 + 1− 1{pos(n/2) < pos(n/2 + 1)} (4)

“⇒” Suppose you will win New Age Solitaire. Therefore either (1) r1 < d2, or (2) r1 = d2 and pos(n/2) <
pos(n/2 + 1). Now, using Eq. (4), we find that you will win if

(1) r < n/2 + 1− 1{pos(n/2) < pos(n/2 + 1)}. In other words if r ≤ n/2 when pos(n/2) > pos(n/2 + 1),
or if r < n/2 when pos(n/2) < pos(n/2 + 1)

(2) r = n/2 and pos(n/2) < pos(n/2 + 1).

Combining (1) and (2) gives the result.

“⇐” Suppose r ≤ n/2. Then Eq. (4) gives r1 ≤ d2 − 1 + 1{pos(n/2) < pos(n/2 + 1)}, i.e. r1 < d2, or
r1 ≤ d2 and pos(n/2) < pos(n/2 + 1), exactly the conditions for winning. 2

By the proposition in section 3, we can now give a closed form solution for the probability of winning
New Age Solitaire, using a new deck that is shuffled s times, using the GSR-shuffle.

Corollary The probability of winning New Age Solitaire, with a new deck of size n, that is GSR-shuffled
s times, equals

n/2∑
r=1

An,r

(
n+2s−r

n

)
2sn

,

where An,r are the Euler numbers.
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Plugging in the numbers, yields a probability of approximately .807 of winning, after GSR-shuffling a
deck of 52 cards 7 times.

5 Relation to the Variation Distance

Lemma Let Q∗s be the distribution on the permutations after s GSR-shuffles, and U be the uniform
distribution on the permutations. For s “big enough” (Mann [3] suggests s > 2 log2 n), we have

P (winning New Age Solitaire after s GSR-shuffles) = ‖Q∗s − U‖+
1
2

(5)

Proof Since the function
(
n+2s−r

n

)
/2sn is non-increasing in r, there exists a “crossover point” v for which(

n+2s−r
n

)
/2sn ≥ 1/n! for all r ≤ v and

(
n+2s−r

n

)
/2sn < 1/n! for all r > v.

Consequently the variation distance is equal to

‖Q∗s − U‖ = max
Π⊆S

∑
π∈Π

(PQ∗s(π)− PU (π)) =
v∑

r=1

An,r

((
n+2s−r

n

)
2sn

− 1
n!

)
. (6)

It is easy to see that the crossoverpoint v is non-decreasing in s and will move to n/2 for n even. Following
Mann [3], v equals n/2 for s > 2 log2 n.

So, for s “big enough” the probability of winning New Age Solitaire after s GSR-shuffles is equal to

n/2∑
r=1

An,r

(
n+2s−r

n

)
2sn

=
n/2∑
r=1

An,r

((
n+2s−r

n

)
2sn

− 1
n!

)
+

1
2

= ‖Q∗s − U‖+
1
2
. (7)

The first equality uses the symmetry in the Euler numbers, i.e. An,r = An,n+1−r and therefore
∑n/2

r=1 An,r =∑n
r=n/2+1 An,r = n!/2. 2

Note that it is impossible to devise a game where the difference between the probability of winning with a
non-uniformly distributed deck and a uniformly distributed deck would be greater than the variation distance
between the two, as can be seen by the “max set” description of the variation distance: any deterministic
card game can be seen as a partitioning of the permutation space into a winning and a losing set. It is easy
to see that this result can be extended to games with random strategies.

Hence, New Age Solitaire exactly pinpoints the Achilles heel of the GSR-shuffle.

6 Variations on circumstances and game rules

In this section we will consider two variations that can be found, e.g. on the internet. In the first variation
the game is the same, but the deck of cards that is used is a new deck of cards has been riffle shuffled 7
times followed by an additional cut. The second variation is a variation on the rules of the game. Instead
of making two piles of cards, one with the cards Ace to King of Hearts followed by Ace to King of Clubs,
and one with Ace to King of Spades followed by Ace to King of Diamonds, the player now makes four piles,
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one for each suit. The player is said to win if the Hearts and Clubs are both finished before the Spades and
Diamonds piles.

We will show that both of these variations make a less interesting object for analysis. The relationship
between the probability of winning and the variation distance between the distribution after GSR-shuffles
and the uniform distribution (and not so much the amusement value for the player!) is obviously the reason
why this game is of interest. We will show that this relationship does not hold for the two variations, i.e.
that the probability of winning for these variations is strictly less than the probability of winning for the
“basic” game.

6.1 Probability of winning after s GSR-shuffles and an additional cut

The analysis of the probability of winning, when the deck is cut after the shuffles are performed, is a bit
more involved. We can derive the probability of winning, however.

Notation Let π be a permutation. Denote by π(c) the permutation that is the result of cutting the permu-
tation right after position c, and concatenating the two pieces in opposite order, i.e. for π = (1 2 3 · · · n),

π(c) = (c + 1 c + 2 · · · n 1 2 · · · c).

Let from here on rs(π) denote the number of rising sequences of π.

The following lemma is proved in the appendix.

Lemma Let π be a permutation. Then

rs(π(c)) = rs(π) + 1{pos(1, π) ≤ c} − 1{pos(n, π) ≤ c}. (8)

Note that this implies that the number of rising sequences cannot increase nor decrease by more than 1,
due to a cut.

We will now focus our attention on the GSR-shuffle. In this case we know that the probability of a
permutation after shuffling only depends on the number of rising sequences of the permutation. We will
derive an expression for the number of permutations with r rising sequences, in which a cut causes an
increase or decrease in the number of rising sequences. Next we will use these, to calculate the probability of
winning New Age Solitaire, i.e. that the deck after shuffling and an additional cut, has n/2 rising sequences
or less.

Let’s define the following numbers:

Bn,r,i,j := # permutations of length n, with r rising sequences, such that pos(1) = i and pos(n) = j.

By the lemma above, we have for all c,

#{π : rs(π) = r and rs(π(c)) = r − 1} = #{π : rs(π) = r and pos(1, π) > c and pos(n, π) ≤ c} (9)

=
n∑

i=c+1

c∑
j=1

Bn,r,i,j (10)
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and

#{π : rs(π) = r and rs(π(c)) = r + 1} = #{π : rs(π) = r and pos(1, π) ≤ c and pos(n, π) > c} (11)

=
c∑

i=1

n∑
j=c+1

Bn,r,i,j . (12)

It is not hard to see that we can indeed compute the numbers Bn,r,i,j for all n, r, i, j, by setting up recursive
relations. In the appendix, we will outline a way to do this.

Corollary The probability of winning New Age Solitaire, with a new deck of size n, that is GSR-shuffled
s times, followed by a binomial (n, p = 1/2) cut, equals

n/2∑
r=1

(
n+2s−r

n

)
2sn

An,r −
(
n+2s−n/2−1

n−1

)
2sn

n∑
c=0

(
n

c

)
1
2n

c∑
i=1

n∑
j=c+1

Bn,n/2,i,j <

n/2∑
r=1

(
n+2s−r

n

)
2sn

An,r (13)

where An,r are the Euler numbers (the number of permutations of length n with r rising sequences).

To see the result above, first note that you win New Age Solitaire, if the number of rising sequences after
the cut is at most n/2. In other words, you win if the number of rising sequences before the cut is at most
n/2, except when the number of rising sequences before the cut is n/2, and the cut causes an increase in
the number of rising sequences, or if the number of rising sequences before the cut is n/2 + 1, and the cut
causes a decrease in the number of rising sequences, i.e., let π be the permutation before the cut, and let the
random variable C be the position of the cut, then

P (winning) = P (rs(π) ≤ n/2) −
n∑

c=0

P (C = c)P (rs(π) = n/2 and rs(π(c)) = n/2 + 1)

+
n∑

c=0

P (C = c)P (rs(π) = n/2 + 1 and rs(π(c)) = n/2)

=
n/2∑
r=1

(
n+2s−r

n

)
2sn

An,r −
(
n+2s−n/2

n

)
2sn

n∑
c=0

P (C = c)
c∑

i=1

n∑
j=c+1

Bn,n/2,i,j

+

(
n+2s−(n/2+1)

n

)
2sn

n∑
c=0

P (C = c)
n∑

i=c+1

c∑
j=1

Bn,n/2+1,i,j .

(14)

Now note that Bn,r,i,j = Bn,n+1−r,j,i. This can be seen by considering permutations σ = (σ1 σ2 · · · σn)
and σ̃ = (n + 1− σ1 n + 1− σ2 · · · n + 1− σn), and remembering that the number of rising sequences in a
permutation plus the number of descending sequences, add up to n + 1.

Therefore, we can write

P (winning) =
n/2∑
r=1

(
n+2s−r

n

)
2sn

An,r−
[((

n+2s−n/2
n

)
2sn

−
(
n+2s−(n/2+1)

n

)
2sn

) n∑
c=0

P (C = c)
c∑

i=1

n∑
j=c+1

Bn,n/2,i,j

]
. (15)

Finally, since
(
a
b

)
=

(
a−1
b−1

)
+

(
a−1

b

)
and thus

(
a
b

)
−

(
a−1

b

)
=

(
a−1
b−1

)
, this is equal to

P (winning) =
n/2∑
r=1

(
n+2s−r

n

)
2sn

An,r −
(
n+2s−n/2−1

n−1

)
2sn

n∑
c=0

P (C = c)
c∑

i=1

n∑
j=c+1

Bn,n/2,i,j . (16)

Using the probabilities for the binomial cut, gives the equality above.
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Now note that all terms, except maybe Bn,n/2,i,j , are strictly positive. Also, it is easy to see that
Bn,n/2,1,n = An−2,n/2, which is strictly positive for n = 4, 6, . . .. For n = 2, B2,1,1,2 = 1. Therefore the

probability above is strictly less than
∑n/2

r=1
(n+2s−r

n )
2sn An,r (for all n even), which is the probability of winning

without the additional cut. 2

Plugging in the same numbers as before, gives a probability of approximately .793 of winning, after
GSR-shuffling a deck of 52 cards 7 times, followed by a binomial (n = 52, p = 1/2) cut.

6.2 New Age Solitaire with four piles

A variation on the rules of New Age Solitaire has the player make four piles instead of just two. Each pile
must be made by adding the cards of one suit in the order Ace to King. In this version the player is said
to win if the Hearts and Clubs piles (the Yin piles) are finished before the Diamonds and Spades piles (the
Yang piles) are both finished. We will call this version of the game 4-pile Solitaire.

Lemma The probability of winning 4-pile solitaire with a deck that is shuffled using s GSR-shuffles, is
strictly less than the probability of winning New Age Solitaire, with a deck that is shuffled using s GSR-
shuffles.

Proof Define Wn,r as the number of permutations with r rising sequences for which you will win 4-pile New
Age Solitaire. Let Ln,r = An,r − Wn,r (the number of “losing permutations”). The probability of winning
the 4-pile version after s GSR-shuffles can then be expressed as follows

P (winning 4-pile Solitaire after s GSR-shuffles)

=
n∑

r=1

Wn,r

(
n+2s−r

n

)
2sn

(17)

=
n/2∑
r=1

Wn,r

(
n+2s−r

n

)
2sn

+
n∑

r=n/2+1

Wn,r

(
n+2s−r

n

)
2sn

(18)

=
n/2∑
r=1

(An,r − Ln,r)

(
n+2s−r

n

)
2sn

+
n∑

r=n/2+1

Wn,r

(
n+2s−r

n

)
2sn

(19)

=
n/2∑
r=1

An,r

(
n+2s−r

n

)
2sn

−
n/2∑
r=1

Ln,r

(
n+2s−r

n

)
2sn

+
n/2∑
r=1

Wn,n+1−r

(
n+2s−(n+1−r)

n

)
2sn

(20)

Now note that Ln,r = Wn,n+1−r, since for each permutation σ = (σ1 σ2 · · · σn) with r rising sequences
which is losing, there exists a permutation σ̃ = (n + 1− σ1 n + 1− σ2 · · · n + 1− σn), which has n + 1− r
rising sequences, which is winning, and vice versa.

(20) =
n/2∑
r=1

An,r

(
n+2s−r

n

)
2sn

−
n/2∑
r=1

Ln,r

((
n+2s−r

n

)
2sn

−
(
n+2s−(n+1−r)

n

)
2sn

)
(21)

<

n/2∑
r=1

An,r

(
n+2s−r

n

)
2sn

, (22)

where the last inequality follows from the fact that r is at most n/2, and the fact that for all n ≥ 4, there
exists an r ≤ n/2, such that Ln,r > 0: for example the permutation σ = ((3/4)n (3/4)n − 1 · · · (1/2)n +
1 n n− 1 · · · (3/4)n + 1 1 2 · · · (1/2)n) has n/2 rising sequences and is losing. 2
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7 Conclusion

We have shown that winning the game New Age Solitaire only depends on the number of rising sequences
in the deck used. Consequently, using Dave Bayer and Persi Diaconis’s result [1] that the probability of a
permutation after GSR-shuffles also only depends on the number of rising sequences, it is easy to compute
the probability of winning with a GSR-shuffled deck. We noted that New Age Solitaire exposes exactly
the weakness of the GSR-shuffle. Finally we have examined two variations, one where an additional cut is
performed after the GSR-shuffles and one where the rules of the game are slightly altered. In both these
cases the probability of winning is strictly less than the probability in the basic case, and therefore, besides
the fact that the analysis is not as crisp as in the basic case, these cases do not form such an interesting
object of study.
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9 Appendix

9.1 Counting rising sequences and descending sequences

Lemma Let r be the number of rising sequences, and d be the number of descending sequences in a
permutation of length n. We have the relation r + d = n + 1.

Proof Look at the pair of cards number i and i+1, for i = 1, . . . , n− 1. Suppose pos(i) < pos(i+1). Then
cards i and i + 1 are contained in one rising sequence, i.e. there is no rising sequence starting at card i + 1.
Also, cards i and i + 1 are not contained in one descending sequence, and therefore there is a descending
sequence starting at card i.

If, on the other hand, pos(i) > pos(i + 1), then a similar argument shows that there is a rising sequence
starting with card i + 1 and no descending sequence starting with card i.
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The number of descending sequences is therefore

d =
n∑

i=1

1{a descending sequence starts at card number i} (23)

= 1 +
n−1∑
i=1

1{a descending sequence starts at card number i} (24)

= 1 +
n−1∑
i=1

1{pos(i) < pos(i + 1)}. (25)

Similarly, the number of rising sequences can be expressed as

r =
n∑

i=1

1{a rising sequence starts at card number i} (26)

= 1 +
n−1∑
i=1

1{a rising sequence starts at card number i + 1} (27)

= 1 +
n−1∑
i=1

1{pos(i) > pos(i + 1)}. (28)

And thus d + r = n + 1. 2

9.2 The number of rising sequences can only change by 1 after a cut

We will use another lemma to prove the lemma of section 4.

Lemma Let π be a permutation. Let π̄ be the permutation that results, if the cards of the rising sequence
containing n, is removed. Let n̄ be the length of permutation π̄, and let c̄ be the position of the cut, corrected
for the cards that are removed, i.e. c̄ = c−#{i > n̄ : pos(i, π) ≤ c}. Then

rs(π(c)) = rs(π̄(c̄)) + 1{pos(n, π) > c}+ 1{pos(n̄, π̄) ≤ c̄}, (29)

or equivalently

rs(π(c)) = rs(π̄(c̄)) +

 0 if pos(n, π) ≤ c and pos(n̄, π̄) > c̄
2 if pos(n, π) > c and pos(n̄, π̄) ≤ c̄
1 otherwise.

(30)

Proof Note that since n̄ + 1 starts a new rising sequence in π, we have pos(n̄ + 1, π) < pos(n̄, π).

Also note that pos(n̄, π̄) ≤ c̄ iff pos(n̄, π) ≤ c.

(case 1) pos(n̄, π) > c. Then the rising sequence in π(c) containing n̄, will be the same as the rising
sequence in π̄(c̄) containing n̄, concatenated with the part of the rising sequence in π containing n̄+1 that is
on positions 1 to c in π. Therefore, π(c) will have one more rising sequence than π̄(c̄) only if the rising sequence
containing n̄ + 1 in π, has elements that are in positions after c in π, which is equivalent to pos(n, π) > c,
since n is the last element of this rising sequence in π. So we have proved

rs(π(c)) = rs(π̄(c̄)) +
{

0 if pos(n, π) ≤ c and pos(n̄, π̄) > c̄
1 if pos(n, π) > c and pos(n̄, π̄) > c̄. (31)
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(case 2) pos(n̄, π) ≤ c. Note that pos(n̄ + 1, π) < pos(n̄, π) ≤ c, and therefore n̄ + 1 starts a new rising
sequence in π(c). Moreover, if the rising sequence in π containing n̄ + 1 extends beyond position c in π, the
last part of the rising sequence will form a new rising sequence i n π(c). This condition is again equivalent
to pos(n, π) > c. So we have proved

rs(π(c)) = rs(π̄(c̄)) +
{

2 if pos(n, π) > c and pos(n̄, π̄) ≤ c̄
1 if pos(n, π) ≤ c and pos(n̄, π̄) ≤ c̄. (32)

Putting the two cases together, gives the result. 2

Lemma Let π be a permutation. Then

rs(π(c)) = rs(π) + 1{pos(1, π) ≤ c} − 1{pos(n, π) ≤ c}, (33)

or equivalently

rs(π(c)) = rs(π) +

 +1 if pos(1, π) ≤ c and pos(n, π) > c
−1 if pos(1, π) > c and pos(n, π) ≤ c
+0 otherwise.

(34)

Proof By induction of the number of rising sequences. For π with 1 rising sequence, i.e. π = (1 2 · · · n),
we get π(c) = (c + 1 c + 2 · · · n 1 2 · · · c) and immediately see that rs(π(c)) = 1 if c = 0 or c = n, and
rs(π(c)) = 2 if c = 2, . . . , n− 1. Since pos(1, π) = 1 and pos(n, π) = n this is exactly in accordance with the
claim.

Suppose now that the claim is true for all permutations with r − 1 rising sequences, and consider a
permutation with r rising sequences, say π. Let as in the lemma before, π̄ be the permutation that results,
if the cards of the rising sequence containing n, is removed. Also, let n̄ and c̄ be as defined in this last claim.

Now, by the last claim, we have

rs(π(c)) = rs(π̄(c̄)) + 1{pos(n, π) > c}+ 1{pos(n̄, π̄) ≤ c̄} (35)
= rs(π̄(c̄)) + 1− 1{pos(n, π) ≤ c}+ 1{pos(n̄, π̄) ≤ c̄} (36)
= rs(π̄) + 1{pos(1, π̄) ≤ c̄} − 1{pos(n̄, π̄) ≤ c̄}

+1− 1{pos(n, π) ≤ c}+ 1{pos(n̄, π̄) ≤ c̄} (by the inductive hypothesis) (37)
= rs(π̄) + 1 + 1{pos(1, π̄) ≤ c̄} − 1{pos(n, π) ≤ c} (38)
= rs(π̄) + 1 + 1{pos(1, π) ≤ c} − 1{pos(n, π) ≤ c} (39)
= rs(π) + 1{pos(1, π) ≤ c} − 1{pos(n, π) ≤ c} (by the definition of π̄) (40)

2

9.3 Recursive relations for Bn,r,i,j

We can find the following relations by deleting element 1, and conditioning on pos(1) in the shorter permu-
tation (i.e. pos(2) in the original permutation).

For i < j:

Bn,r,i,j =
i−1∑
k=1

Bn−1,r−1,k,j−1 +
j−2∑
k=i

Bn−1,r,k,j−1 +
n−1∑
k=j

Bn−1,r,k,j−1. (41)
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For i > j:

Bn,r,i,j =
j−1∑
k=1

Bn−1,r−1,k,j +
i−1∑

k=j+1

Bn−1,r−1,k,j +
n−1∑
k=i

Bn−1,r,k,j (42)

Alternatively, one could delete element n and condition on pos(n − 1), et cetera. Note that this recursion
scheme, together with B1,1,1,1 = 1, B1,r,i,j = 0 for r 6= 1, i 6= 1 or j 6= 1, indeed determines the value of
Bn,r,i,j for all n, r, i, j, since Bn,r,i,j is only defined in terms of Bn−1,r′,i′,j′ .
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